Find the equations of the tangents to the
curve x² + y2 – 2x – 4y + 1 = 0, which are
parallel to the X-axis.
ution:
Answers
Answered by
0
Answer:
x2+y2−2x−4y+1
⇒2x+2ydxdy−2−4dxdy=0⇒x+ydxdy−1−2dxdy=0 ⇒ (y−2)dxdy=(1−x)dxdy=(1−x)(y−2)
for the tangents to be parallel to y− axis, dxdy=0
∴dxdy=(1−x)(y−2)=0 ⇒y=2
When y=2
x2+22−2x−4(2)+1=0 ⇒x2+4−2x−8+1=0⇒x2−2x−3=0 ⇒(x−1)(x−3)=0 ⇒x=−1 or 3
So, the points where tangents are parallel to y− axis
=(−1,2),(3,2)
Step-by-step explanation:
Similar questions