Physics, asked by gnanitha115, 11 months ago

find the equivalent resistance between AB​

Attachments:

Answers

Answered by AbdJr10
2

Answer:

70/ 17

Explanation:

hope the answer will help you

Answered by shadowsabers03
0

Answer:-

\Large\boxed{\sf{\dfrac{70}{17}\ \Omega}}

Solution:-

  • \sf{R_{AD}=2\Omega}

  • \sf{R_{DC}=4\Omega}

  • \sf{R_{AC}=6\Omega}

  • \sf{R_{CB}=4\Omega}

  • \sf{R_{AB}=10\Omega}

The equivalent resistance through the path ADC is (series),

\longrightarrow\sf{R_{ADC}=R_{AD}+R_{DC}}

\longrightarrow\sf{R_{ADC}=2\Omega+4\Omega}

\longrightarrow\sf{R_{ADC}=6\Omega}

So the equivalent resistance through the path AC with ADC is (parallel),

\longrightarrow\sf{R'_{AC}=\left(\dfrac{1}{R_{ADC}}+\dfrac{1}{R_{AC}}\right)^{-1}}

\longrightarrow\sf{R'_{AC}=\left(\dfrac{1}{6\Omega}+\dfrac{1}{6\Omega}\right)^{-1}}

\longrightarrow\sf{R'_{AC}=\left(\dfrac{2}{6\Omega}\right)^{-1}}

\longrightarrow\sf{R'_{AC}=3\Omega}

The equivalent resistance through the path ACB is (series),

\longrightarrow\sf{R_{ACB}=R'_{AC}+R_{CB}}

\longrightarrow\sf{R_{ACB}=3\Omega+4\Omega}

\longrightarrow\sf{R_{ACB}=7\Omega}

So the equivalent resistance through AB is,

\longrightarrow\sf{R'_{AB}=\left(\dfrac{1}{R_{ACB}}+\dfrac{1}{R_{AB}}\right)^{-1}}

\longrightarrow\sf{R'_{AB}=\left(\dfrac{1}{7\Omega}+\dfrac{1}{10\Omega}\right)^{-1}}

\longrightarrow\sf{R'_{AC}=\left(\dfrac{17\Omega}{70\Omega^2}\right)^{-1}}

\longrightarrow\sf{\underline{\underline{R'_{AC}=\dfrac{70}{17}\ \Omega}}}

Similar questions