Physics, asked by zckansari8641, 6 months ago

Find the equivalent resistance for 20ohm 15ohm and 20ohm parallel conecetion

Answers

Answered by prince5132
17

GIVEN :-

  1. Three resistors of 20Ω , 15Ω , 20Ω.

TO FIND :-

  1. The equivalent resistance.

SOLUTION :-

Let R₁ be 20Ω R₂ be 15Ω R₃ be 20Ω.

Now as we know that , when the resistors are connected in parallel combination then their equivalent resistance is given by,

 \\  :  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =  \frac{1}{R_1}  +  \frac{1}{R_2}  +  \frac{1}{R_3}  + ... +  \frac{1}{R_n}  \\  \\  \\

  :  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =  \frac{1}{20}  +  \frac{1}{15}  +  \frac{1}{20}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{3 + 4 + 3}{60}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{10}{60}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{1}{6}  \\  \\  \\

:  \implies \displaystyle  \underline{ \boxed{\sf \bold{ \:  {R_{eq}}   =  6 \:  \Omega}}}

Answered by Anonymous
127

Given

\begin{lgathered}\begin{lgathered}\begin{lgathered}\tt {\pink{Three\: resistors}}\begin{cases} \sf{\green{R_1 = 20 Ω}}\\ \sf{\blue{R_2 = 15 Ω}}\\ \sf{\orange{R_3 = 20 Ω}}\end{cases}\end{lgathered} \:\end{lgathered}\end{lgathered}

To find

  • Equivalent resistance.

Solution

We know that, in parallel connection

\implies{\dfrac{1}{R_{eq}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3} + .........+\dfrac{1}{R_n}}

» Putting the values

\implies{\dfrac{1}{R_{eq}} = \dfrac{1}{20} + \dfrac{1}{15} + \dfrac{1}{20}}

\implies{\dfrac{1}{R_{eq}} = \dfrac{3 + 4 + 3}{60}}

\implies{\dfrac{1}{R_{eq}} = \dfrac{10}{60}}

\implies{\dfrac{1}{R_{eq}} = \dfrac{1}{6}}

\implies{R_{eq} = 6Ω}

Hence, the equivalent resistance is 6Ω.

Similar questions