Math, asked by Anonymous, 8 hours ago

find the escape velocity when the escape velocity of planet whose mass is 1 by 6 mass of earth and radius is one by two of earth radius​

Answers

Answered by MysticSohamS
0

Answer:

your answer is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ escape \: velocity \: of \: planet \: (Vp) \\  \\ let \: here \\ escape \: velocity \: of \: earth \: be \: Ve \\ and \: that \: of \: planet \: be \: Vp \\ moreover \: let \: the \: mass \: of \: earth \\ be \: Me \: and \: its \: radius \: be \: R \\ and \: that \: of \: mass \: and \: radius \: of \\ planet \: be \: Mp \: and \: R1 \: respectively

given :  \\ Mp =  \frac{1}{6}  \times Me \\  \\ Me = 6.Mp \:  \:  \:  \:  \:  \: (1) \\  \\Rp =  \frac{1}{2}  \times R \\  \\ R = 2.Rp \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

we \: know \: that \\ escape \: velocity \: of \: earth = 11.2 \:km \: /s \\  \\ thus \: then \\ Ve =  \sqrt{ \frac{2GM}{R} }  \\  \\  =  \sqrt{ \frac{2.G.6.Mp}{2.Rp} }  \:  \:  \\  \\  11.2=  \sqrt{ \frac{6.GMp}{Rp} }  \:  \:  \:  \:  \:  \:  \: (3) \\  \\

similarly \: escape \: velocity \: of \:  \\ planet \: would \: be \: given \: by \\  \\ Vp =  \sqrt{ \frac{2.GMp}{Rp} }  \:  \:  \:  \:  \:  \:  \:  \:  \: (4) \\  \\ applying \: now \:  \:  \frac{(3)}{(4)}  \\ we \: get \\  \\  \frac{11.2}{Vp}  =  \frac{ \frac{ \frac{ \sqrt{6GMp} }{ \sqrt{Rp} } }{ \sqrt{2.GMp} } }{ \sqrt{Rp} }  \\  \\  =  \sqrt{ \frac{6.GMp}{Rp} }  \times  \sqrt{ \frac{Rp}{2.GMp} }  \\  \\  = \frac{11.2}{Vp}   = \frac{ \sqrt{6} }{ \sqrt{2} }  \\  \\  \frac{11.2}{Vp}  =  \sqrt{3}  \\  \\ Vp =  \frac{11.2}{ \sqrt{3} }  \:  \: km \: /s

Similar questions