Math, asked by Ruthwik8269, 10 months ago

Find the evolutes of x2/3 y2/3=a2/3

Answers

Answered by Swarup1998
10

Correct question:

Find the evolute of x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}.

Step-by-step explanation:

Let us consider the parametric equations of the given curve,

x=a\:cos^{3}\theta

y=a\:sin^{3}\theta

By differentiation, we get

y_{1}=\frac{dy}{dx}=-tan\theta

y_{2}=\frac{d^{2}y}{dx^{2}}=\frac{1}{3a}\:sec^{4}\theta\:cosec\theta

If we take (\bar{x},\bar{y}) to be the co-ordinates of the centre of curvature, then

\bar{x}=x-\frac{y_{1}(1+y_{1}^{2})}{y_{2}}

\quad=a\:cos^{3}\theta+\frac{3a\:tan\theta(1+tan^{2}\theta)}{sec^{4}\theta\:cosec\theta}

\quad=a\:cos^{3}\theta+3a\:sin^{2}\theta\:cos\theta ... (1)

and \bar{y}=y+\frac{1+y_{1}^{2}}{y_{2}}

\quad=a\:sin^{3}\theta+3a\:cos^{2}\theta\:sin\theta ... (2)

Here we can obtain the evolute by eliminating \theta from (1) and (2).

Now, (\bar{x}+\bar{y})=a\:(sin\theta+cos\theta)^{3}

\Rightarrow (\bar{x}+\bar{y})^{\frac{2}{3}}=a^{\frac{2}{3}}\:(sin\theta+cos\theta)^{2}

and similarly, (\bar{x}-\bar{y})^{\frac{2}{3}}=a^{\frac{2}{3}}\:(cos\theta-sin\theta)^{2}

\therefore (\bar{x}+\bar{y}^{\frac{2}{3}}+(\bar{x}-\bar{y})^{\frac{2}{3}}=2a^{\frac{2}{3}}

Therefore, the required evolute (which is the locus of (\bar{x},\bar{y})) is

(x+y)^{\frac{2}{3}}+(x-y)^{\frac{2}{3}}=2a^{\frac{2}{3}}

Read more on Brainly.in

The radius of curvature at the point (s,y)on the curve 5=c\:log(secy) is

https://brainly.in/question/14265407

Similar questions