Math, asked by poonamlohani892, 1 month ago

find the expansion of (2a+3b+4c)^2​

Answers

Answered by sujayroy63
0

We know,

(x+y+z)2=x2+y2+z2+2xy+2yz+2zx        [Identity]

Here, 

x=2a

y=3b

z=4c

Putting Values in Identity, We get :

⇒ (2a+3b+4c)2=(2a)2+(3b)2+(4c)2+2(2a)(3b)+2(3b)(4c)+2(4c)(2a)

                                  =4a2+9b2+16c2+12ab+24bc+16ca ( answer)

Plz mark me as brainliest

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expansion is

\rm :\longmapsto\: {(2a + 3b + 4c)}^{2}

We know that,

 \boxed{ \sf{ \:  {(x + y + z)}^{2} =  {x}^{2} +  {y}^{2} +  {z}^{2} + 2xy + 2yz + 2zx}}

So, here

 \red{\rm :\longmapsto\:x = 2a}

 \red{\rm :\longmapsto\:y = 3b}

 \red{\rm :\longmapsto\:z = 4c}

So, on substituting the values of x, y and z, we get

\rm :\longmapsto\: {(2a + 3b + 4c)}^{2}

\rm \:  =  \: {(2a)}^{2} +  {(3b)}^{2} +  {(4c)}^{2} + 2(2a)(3b) + 2(3b)(4c) + 2(4c)(2a)

\rm \:  =  \: {4a}^{2} +  {9b}^{2} +  {16c}^{2} + 12ab + 24bc + 16ca

Additional Information :-

 \boxed{ \bf{ \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

 \boxed{ \bf{ \:  {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}

 \boxed{ \bf{ \:  {(x  -  y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x - y)}}

 \boxed{ \bf{ \:  {(x  +   y)}^{3} =  {x}^{3}   +  {y}^{3}  +  3xy(x  + y)}}

 \boxed{ \bf{ \:  {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

 \boxed{ \bf{ \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}}

 \boxed{ \bf{ \:  {x}^{3}  -  {y}^{3} = (x  -  y)( {x}^{2}  +  xy +  {y}^{2})}}

 \boxed{ \bf{ \:  {x}^{4} -  {y}^{4} = (x - y)(x + y)( {x}^{2} +  {y}^{2})}}

Similar questions