Find the expansion of sin(A+B-C).
Answers
Answered by
60
We know that Sin(A+B) = SinA CosB + CosA SinB
Therefore Sin(A+B+C) = Sin(A+B)CosC + Cos(A+B)SinC
Now Sin(A+B) = SinACosB + CosASinC. and
Cos(A+B) = CosACosB -SinASinC
Substituting we get
Sin(A+B+C) = (SinACosB +CosASinB)CosC + (CosACosB -SinASinB)SinC
= SinACosBCosC + CosASinBCosC + CosACosBSinC - SinASinBSinC
Therefore Sin(A+B+C) = Sin(A+B)CosC + Cos(A+B)SinC
Now Sin(A+B) = SinACosB + CosASinC. and
Cos(A+B) = CosACosB -SinASinC
Substituting we get
Sin(A+B+C) = (SinACosB +CosASinB)CosC + (CosACosB -SinASinB)SinC
= SinACosBCosC + CosASinBCosC + CosACosBSinC - SinASinBSinC
Gnanaprakash11:
sorry! I just asked sin(A+B-C) not sin(A+B+C).
Answered by
28
Step-by-step explanation:
sin(A+B)=sinA.cosB+cosA.sinB
sin(A+B-C)=sin((A+B)-C)
so,sin(A+B-C)=sin(A+B).cos(-C)+cos(A+B).sin(-C)
sin(A+B-C)=sin(A+B).cosC-cos(A+B).sinC
=sinA.cosB.cosC+cosA.sinB.cosC
-cosA.cosB.sinC+sinA.sinB.sinC
Hope it helps you....
Similar questions