Math, asked by ananyathakur773, 1 day ago

find the expression for the area and perimeter of the rectangle in figure 3 ​

Attachments:

Answers

Answered by ItzHannu001
49

Given:-

 \\

  • Length= +5 cm
  • Breadth = x+3 cm

 \\

To Find:-

 \\

  • Expression for the area and perimeter

 \\

 \large{ \sf{ \underline{Expression  \:  \: for  \:  \: perimeter}}}

 \\

 \implies \:  \:  \:  \:  \large{ \bold{ \sf \: Perimeter  \tiny({Rectangle}) = \large2(l \:  +  \: b) }}

 \\

Now put the values,

 \\

 \implies \:  \:    \large{ \bold{ \sf Perimeter  \tiny({Rectangle}) = \large2( {x}^{2}  + 5 + x + 3) }}

 \\

 \implies \:  \:  \:  \:  \large{ \bold{ \sf \: Perimeter  \tiny({Rectangle}) = \large2( {x}^{2}  + x + 8) }}

 \\

 \implies \:  \:  \:  \:  \large{ \bold{ \sf \: Perimeter  \tiny({Rectangle}) = \large2 {x}^{2} + 2x + 16  }}

 \\  \\

 \large \sf \:  \underline{Expression \:  \:  for \:  \:  Area }

 \\

 \implies \:  \:  \:  \:  \large{ \bold{ \sf \:  Area \tiny({Rectangle}) = \large \: l \times b}}

 \\

 \implies \:  \:  \:  \:  \large{ \bold{ \sf \:  Area \tiny({Rectangle}) = \large \: ( {x}^{2} + 5)(x + 3) }}

 \\

 \implies \:  \:  \:  \:  \large{ \bold{ \sf \:  Area \tiny({Rectangle}) = \large \:  {x}^{2}(x + 3) + 5( \times   + 3) }}

 \\

 \implies \:  \:  \:  \:  \large{ \bold{ \sf \:  Area \tiny({Rectangle}) = \large \:  {x}^{3} + 3 {x}^{2}  + 5x  + 3 }}

 \\  \\

_________________________

Answered by nihasrajgone2005
5

\huge\red{A}\pink{N}\orange{S} \green{W}\blue{E}\gray{R} =

Area of a rectangle is length x width (A = l x w)

Perimeter of a rectangle is P = 2l + 2w

P = 2(2x + 3) + 2w = 6x + 10

4x + 6 + 2w = 6x + 10

2w = 2x + 4

w = x + 2

∴ A = l + w = (2x + 3)(x + 2)

A = 2x^2 + 7x + 6 is the expression for the area in inches QED

Similar questions