Find the extreme value of cos 2x + cos² x.
Answers
Answered by
7
we know, cos²A = (1 + cos2A)/2
so, cos²x = (1 + cos2x)/2
now, cos2x + cos²x = cos2x + (1 + cos2x)/2
= (2cos2x + 1 + cos2x)/2
= (1 + 3cos2x)/2
we know, -1 ≤ cosine function ≤ 1
so, -1 ≤ cos2x ≤ 1
or, -3 ≤ 3cos2x ≤ 3
or, 1 - 3 ≤ 1 + 3cos2x ≤ 1 + 3
or, -2 ≤ 1 + 3cos2x ≤ 4
or, -2/2 ≤ (1 + 3cos2x)/2 ≤ 4/2
or, -1 ≤ (1 + 3cos2x)/2 ≤ 2
hence, -1 ≤ cos2x + cos²x ≤ 2
so, maximum or extreme value of given function is 2.
so, cos²x = (1 + cos2x)/2
now, cos2x + cos²x = cos2x + (1 + cos2x)/2
= (2cos2x + 1 + cos2x)/2
= (1 + 3cos2x)/2
we know, -1 ≤ cosine function ≤ 1
so, -1 ≤ cos2x ≤ 1
or, -3 ≤ 3cos2x ≤ 3
or, 1 - 3 ≤ 1 + 3cos2x ≤ 1 + 3
or, -2 ≤ 1 + 3cos2x ≤ 4
or, -2/2 ≤ (1 + 3cos2x)/2 ≤ 4/2
or, -1 ≤ (1 + 3cos2x)/2 ≤ 2
hence, -1 ≤ cos2x + cos²x ≤ 2
so, maximum or extreme value of given function is 2.
Similar questions