Find the extreme values of 1)cos2x+cos²x
2)3sin²X+5cos²x
Answers
Answer:
cos2x+cos²x extreme values -1 & 2
3sin²x+5cos²x extreme values 3 & 5
Step-by-step explanation:
1)
cos2x+cos²x
= 2cos²x - 1 + cos²x
= 3cos²x - 1
- 1≤ Cosx ≤ 1
0 ≤ cos²x ≤ 1
Extreme values
= 3 * 1 - 1 = 2
& 3 * 0 - 1 = - 1
2)3sin²x+5cos²x
= 3sin²x + 5 - 5sin²x
= 5 - 2sin²x
0 ≤ Sin²x ≤ 1
5 - 2* 0 = 5
5 - 2*1 = 3
Extreme values are 3 & 5
Answer:
1) -1 and 2
2) 3 and 5
Step-by-step explanation:
1) cos2x+cos²x
It can be written as;
= 2cos²x - 1 + cos²x
= 3cos²x - 1
Since, the range of cosx belongs to;
- 1≤ Cosx ≤ 1
So,
0 ≤ cos²x ≤ 1
Now, we have to find the Extreme values of the above function;
= 3 * 1 - 1 = 2
&
3 * 0 - 1 = - 1
∴ The two extreme values of the above function are -1 and 2.
2)3sin²x+5cos²x
It can be written as;
= 3sin²x + 5 - 5sin²x
= 5 - 2sin²x
Since the range of sinx belongs to
0 ≤ Sin²x ≤ 1
Now, we have to find the Extreme values of the above function;
5 - 2* 0 = 5
&
5 - 2*1 = 3
Extreme values are 3 & 5
∴ The two extreme values of the above function are 3 and 5.