Math, asked by thannirubharathkumar, 7 months ago

Find the extreme values of 13cos x +3√3
Sin x-4​

Answers

Answered by suryanshazmjrs02
1

Step-by-step explanation:

13cos x +3√3</p><p>Sin x-4

 =  (\sqrt{ {(13)}^{2} +  {(3 \sqrt{3}) }^{2}  } (13cos x +3√3</p><p>Sin x-4) \div (\sqrt{ {(13)}^{2} +  {(3 \sqrt{3}) }^{2}  })) - 4

 = 14 \times( (13 \cos \: x \:  + 3 \sqrt{3}  \sin \: x) \div 14) - 4 \\  = 14 \times ((sin \:  \alpha  \times  \cos \: x +  \cos \:  \alpha  \times  \sin \: x) \\

where,

 \tan \:  \alpha  = 13 \div 3 \sqrt{3}

NOW,

 = 14 \times( (13 \cos \: x \:  + 3 \sqrt{3}  \sin \: x) \div 14) - 4 \\  = 14 \times ((sin \:  \alpha  \times  \cos \: x +  \cos \:  \alpha  \times  \sin \: x) \\

 = 14 \times  \sin( \alpha  + x)  - 4

And we know that,

 - 1   \leqslant  \sin(z)   \leqslant 1

this implies, above simplification is

 = 14 \times  \sin( \alpha  + x)  - 4 \\  - 1 \leqslant  \sin( \alpha  + x)  \leqslant 1 \\  =  &gt;  - 14 \leqslant 14 \times  \sin( \alpha  + x)  \leqslant 14 \\  =  &gt;  - 14 - 4 \leqslant 14 \times  \sin( \alpha  + x)  - 4 \leqslant 14 - 4 \\  =  &gt;  - 18 \leqslant 14 \times  \sin( \alpha  + x) -4 \leqslant 10 \\

ANS.

Similar questions