Find the factor of :-
( x + y )³ - ( x³ + y³ )
Answers
Answer:
Solution :-
✪ (x + y)³ - (x³ + y³)
➻ {(x)³ + 3 × x² × y + 3 × x × y² +(y)³} - (x³ + y³)
➻ {x³ + 3x²y + 3xy² + y³} - (x³ + y³)
➻ x³ + 3x²y + 3xy² + y³ - x³ - y³
➻ x³ - x³ + y³ - y³ + 3x²y + 3xy²
➻ 3x²y + 3xy²
➻ 3xy(x + y)
∴ The answer of this question is 3xy(x + y)
From the given question the correct answer is:
The answer of this question is 3xy(x + y)
Given:
( x + y )³ - ( x³ + y³ )
To find:
Factor of given
Solution:
we have to find the factor of the ( x + y )³ - ( x³ + y³ )
so we will go by step by step
(x + y)³ - (x³ + y³)
we know that,
(A+B) ³= A³ +B³ +3A 2 B+3AB
expand it
= {(x)³ + 3 × x² × y + 3 × x × y² +(y)³} - (x³ + y³)
= {x³ + 3x²y + 3xy² + y³} - (x³ + y³)
= x³ + 3x²y + 3xy² + y³ - x³ - y³
=x³ - x³ + y³ - y³ + 3x²y + 3xy²
= 3x²y + 3xy²
=3xy(x + y)
Hence, The answer of this question is 3xy(x + y)