Math, asked by cb710, 6 months ago

find the factors for x³ + 3x² - 4x -12​

Answers

Answered by nitya2512
23

Answer:

(x+3)(x+2)(x−2)

Step-by-step explanation:

Factor x3+3x2−4x−12

x3+3x2−4x−12

=(x+3)(x+2)(x−2)

Answered by hotelcalifornia
29

Given:

x^3\;+\;3x^2\;-\;4x\;-12

To find:

The factors of x^3\;+\;3x^2\;-\;4x\;-12

Step-by-step explanation:

Let us consider x\;=\;-1

f(x)\;=\;x^3\;+\;3x^2\;-\;4x\;-12

f(x)=(-1)^3+3(-1)^2-4(-1)-12

f(x)=\;-1+3+4-12=-6

So, (x+1) is not a factor

Let us consider x=-2

f(x)=(-2)^3+3(-2)^2-4(-2)-12

f(x)=-8+12+8-12\;=\;0

So, (x+2) is a factor of f(x)

When we divide f(x) by (x+2)

⇒ Quotient = x^2+x-6

x^2-2x+3x-6

x(x-2)\;+\;3(x-2)

(x-2)\;(x+3)

Answer:

Therefore, the factors of x^3\;+\;3x^2\;-\;4x\;-12 are (x+2)\;(x-2)\;(x+3)

Similar questions