Find the factors of 6x^3+x^2-11x-6
Answers
Step-by-step explanation:
Dividing : 6x3+x2-11x-6
("Dividend")
By : 2x-3 ("Divisor")
dividend 6x3 + x2 - 11x - 6
- divisor * 3x2 6x3 - 9x2
remainder 10x2 - 11x - 6
- divisor * 5x1 10x2 - 15x
remainder 4x - 6
- divisor * 2x0 4x - 6
remainder 0
Quotient : 3x2+5x+2 Remainder: 0
Answer:
The factors are 1, 2, and 3
Step-by-step explanation:
According to Factor theorem, if (x - a) is a polynomial factor f(x), then f(a) = 0
Let f(x) = x^{3}-6 x^{2}+11 x-6f(x)=x3−6x2+11x−6
Let us check if (x - 1) is the factor of f(x),
Then,
f(1) = 1^{3}-6\left(1^{2}\right)+11(1)-6=1-6+11-6=0f(1)=13−6(12)+11(1)−6=1−6+11−6=0
Therefore (x-1) is a factor of f(x)
Let us check for the other factors
Hence,
f(x)=(x-1)\left(x^{2}-5 x+6\right)f(x)=(x−1)(x2−5x+6)
x^{2}-5 x+6=x^{2}-2 x-3 x+6x2−5x+6=x2−2x−3x+6
=x(x-2)-3(x-2)=x(x−2)−3(x−2)
= (x - 2)(x - 3)=(x−2)(x−3)
f(x) = (x - 1)(x - 2)(x - 3)f(x)=(x−1)(x−2)(x−3)
Therefore, 1, 2, 3 are the factors of f(x)
Step-by-step explanation:
btw I'm an army..
do u remember me?