Math, asked by srivedhloka, 4 months ago

find the factors of the following: (3x+ypower3z)​

Answers

Answered by chandrakalarajput070
0

Answer:

Given: p(x,y)=405x^{6}+45y^{6}-270x^{3}y^{3}p(x,y)=405x

6

+45y

6

−270x

3

y

3

To prove: (\sqrt[3]{3}x-y)(

3

3

x−y) a factor of p(x,y)p(x,y)

Proof:

Now, 405x^{6}+45y^{6}-270x^{3}y^{3}405x

6

+45y

6

−270x

3

y

3

=45\:(9x^{6}+y^{6}-6x^{3}y^{3})=45(9x

6

+y

6

−6x

3

y

3

)

=45\:[(3x^{3})^{2}+(y^{3})^{2}-2\times 3x^{3}\times y^{3}=45[(3x

3

)

2

+(y

3

)

2

−2×3x

3

×y

3

=45\:(3x^{3}-y^{3})^{2}=45(3x

3

−y

3

)

2

=45\:\{(\sqrt[3]{3}x)^{3}-(y)^{3}\}^{2}=45{(

3

3

x)

3

−(y)

3

}

2

=45\:[(\sqrt[3]{3}x-y)\:\{(\sqrt[3]{3}x)^{2}+\sqrt[3]{3}xy+y^{2}\}]^{2}=45[(

3

3

x−y){(

3

3

x)

2

+

3

3

xy+y

2

}]

2

\longrightarrow⟶ This shows that (\sqrt[3]{3}x-y)(

3

3

x−y) is a factor of p(x,y)p(x,y) .

Hence proved.

Formula used:

a^{2}-2ab+b^{2}=(a-b)^{2}a

2

−2ab+b

2

=(a−b)

2

a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})a

3

−b

3

=(a−b)(a

2

+ab+b

2

)

Similar questions