Math, asked by ishitatanvi29, 5 days ago

Find the factors of the given expression: (3a - 8)² - 4a²​

Answers

Answered by sonuvikash790
0

Answer:

(2ab) power6 is the monomial

Answered by raben
1

(3a - 8)² - 4a²

= (3a - 8)² - (2a)² [a²-b²=(a+b)(a-b)]

= (3a-8+2a)(3a-8-2a)

= (5a-8)(a-8)

= 5a²-40a-8a+64

= 5a²-48a+64

OR

(3a - 8)² - 4a²

= (3a - 8)² - 4a² [(a-b)²=a²+b²-2ab]

= [(3a)²+(8)²-2(3a)(8)] - 4a²

= 9a²+64-48a-4a²

= 5a²-48a+64

5a²-48a+64

= 5a²-40a-8a+64

= (5a²-40a)-(8a-64)

= 5a(a-8)-8(a-8)

= (5a-8)(a-8)

(5a-8) and (a-8) are the factors of 5a²-48a+64 or (3a - 8)² - 4a².

Hope it helps you.

Similar questions