Find the factors of the given expression: (3a - 8)² - 4a²
Answers
Answered by
0
Answer:
(2ab) power6 is the monomial
Answered by
1
(3a - 8)² - 4a²
= (3a - 8)² - (2a)² [a²-b²=(a+b)(a-b)]
= (3a-8+2a)(3a-8-2a)
= (5a-8)(a-8)
= 5a²-40a-8a+64
= 5a²-48a+64
OR
(3a - 8)² - 4a²
= (3a - 8)² - 4a² [(a-b)²=a²+b²-2ab]
= [(3a)²+(8)²-2(3a)(8)] - 4a²
= 9a²+64-48a-4a²
= 5a²-48a+64
5a²-48a+64
= 5a²-40a-8a+64
= (5a²-40a)-(8a-64)
= 5a(a-8)-8(a-8)
= (5a-8)(a-8)
(5a-8) and (a-8) are the factors of 5a²-48a+64 or (3a - 8)² - 4a².
Hope it helps you.
Similar questions