Math, asked by Anonymous, 1 day ago

Find the factors of the polynomial given below (x^2 - 6x)^2 +12 (x^2 - 6x) +35
kon kon online h ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {( {x}^{2}  - 6x)}^{2} + 12( {x}^{2} - 6x) + 35 \\

Let assume that

 \red{\rm \:  {x}^{2} - 6x = y \: } \\

So, above expression can be rewritten as

\rm \:  =  \:  {y}^{2} + 12y + 35 \\

\rm \:  =  \:  {y}^{2} + 7y + 5y + 35 \\

\rm \:  =  \:  y(y + 7) + 5(y + 7) \\

\rm \:  =  \:  (y + 7)(y + 5) \\

\rm \:  =  \:  ( {x}^{2} - 6x  + 7)( {x}^{2} - 6x  + 5) \\

\rm \:  =  \:  ( {x}^{2} - 6x  + 7)( {x}^{2} - 3x - 2x  + 5) \\

\rm \:  =  \:  ( {x}^{2} - 6x  + 7)\bigg(x(x - 3) - 2(x - 3)\bigg) \\

\rm \:  =  \:  ( {x}^{2} - 6x  + 7)(x - 2)(x - 3) \\

Hence,

\rm\implies \: {( {x}^{2} - 6x) }^{2}  + 12( {x}^{2} - 6x) + 35 \\  \\ \rm \:   \red{ \: =  \:  \:  ( {x}^{2} - 6x  + 7)(x - 2)(x - 3)} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions