Math, asked by monisingh8756, 3 months ago

Find the factors of -:x^2 + 18 x + 81

No Spam Allowed :​

Answers

Answered by Anonymous
9

AnswEr-:

  • \underline{\boxed {\mathrm {\red{ Factors \:are\:-:(x + 9)   ( x + 9)} }}}

Explanation-:

  • Find factors of -: x² + 18x + 81 .

\dag{\mathrm { Solution \:of\: Question-:}}

  • \longrightarrow {\mathrm { x^{2} + 18x + 81 }}

\sf{ By\:Using \:Sum-\:Product \:pattern-:}

  • \longrightarrow {\mathrm { x^{2} + \purple{18x} + 81 }}

  • \longrightarrow {\mathrm { x^{2} + \purple {9x + 9x} +  81 }}

\sf{ Now\:Finding \:Common-\:Factors \:from\:each\:term-:}

  • \longrightarrow {\mathrm { x^{2} +  9x + 9x +  81 }}

\sf{ By\:Taking\:x\:as \:common\:in\:First \:term-:}

  • \longrightarrow {\mathrm { \purple {x^{2} +  9x} + 9x +  81 }}

  • \longrightarrow {\mathrm { \purple {x(x + 9)}  +  9 x + 81 }}

\sf{ By\:Taking\:9\:as \:common\:in\:Second \:term-:}

  • \longrightarrow {\mathrm { x(x + 9)  + \purple{ 9 x + 81} }}

  • \longrightarrow {\mathrm { x(x + 9)  + \purple{ 9 ( x + 9)} }}

\sf{ Now,\:Rewrite \:the\:factored\:term\:\:-:}

  • \longrightarrow {\mathrm { x(x + 9)  +  9 ( x + 9) }}

  • \longrightarrow {\mathrm { \purple{(x + 9)   ( x + 9)} }}

Hence ,

  • \underline{\boxed {\mathrm {\blue{ Factors \:are\:-:(x + 9)   ( x + 9)} }}}

_________________________________________________________

Answered by BrainlyRish
4

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☆ GIVEN⠀ POLYNOMIAL  – x² + 18x  + 81 :

⠀⠀⠀⠀

:\implies\sf x^2 +18x + 81 = 0 \\\\\\\star \sf{By \:Using\:Sum-Product \:Pattern\::}\\\\ \:\implies\sf x^2 + 9x + 9x + 81= 0 \\\\\\\star\sf{Finding\:out\:Common\:Terms\::}\\\\\\:\implies\sf x(x + 9) +9(x + 9) = 0\\\\\\\star\sf{Now,\:Rewrite\:in\:Factored\:term\::}\\\\\\:\implies\sf (x + 9)\; (x + 9) = 0\\\\\\:\implies{\underline{\boxed{\frak{\purple{(x+9)(x+9)}}}}}\;\bigstar

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence, \:The\:factors\:are\:\bf{(x+9)\:and \:(x+9)\: }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions