Math, asked by nikhilsam1551, 8 months ago

Find the find a quadratic polynomial whose zeros are 2 + under root 3 and 2 minus under root 3

Answers

Answered by Anonymous
70

\huge\bold{\underline{\underline{{Question:-}}}}

Find the find a quadratic polynomial whose zeros are 2 + under root 3 and 2 minus under root 3?

\huge\bold{\underline{\underline{{Answer:-:-}}}}

\bold{Given:-}\begin{cases}\sf{\underline{zeros\:\: are\:\: Given:-}}\\ \\ \sf {{1}^{st}\:\:\:\:\:2+\sqrt{3}}\\ \\ \ sf{{2}^{nd}\:\:\:\:2-\sqrt{3}}\end{{cases}

\large\underline{solution:-}[tex]</p><p>Let zeros be α and β</p><p>[tex]\green α = 2 + \sqrt{3}</p><p>\\ \\ \ red\β =2-\sqrt{3}

so,

Let find some of zeros.

α + β = 2 +\sqrt{\cancel3}+ 2-

\sqrt{\cancel3} .\\ \\ \: \: \:

\: \: \: \: \: \: \: \: \: = 4.

green{\underline{\α + β = 4---(1)}

━━━━━━━━━━━━━━━━━━━━━━━━

 produce \:of \:zeros \:= α × β \\ \\ \:

\: \: \:\:\:\:\:\:\:\:\:\: = 2+\ sqrt{3})

\times( 2 - \sqrt{3} )\\ \\ \:

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 4 - 3 \\ \\

\: \: \: \: \: \: \: \: \: \: \: \:\:\:\:

= 1.

\red{\underline{\α × β = 1.-----(2)

━━━━━━━━━━━━━━━━━━━━━━━━

k({x}^{2}- sx +p) \\ \\ </p><p>k({x}^{2}- (4) x+1).\\ \\</p><p>k({x}^{2}-4x+1)

━━━━━━━━━━━━━━━━━━━━━━━━

Answered by REAAN
17

Answer:

hello dear.......

Step-by-step explanation:

i hope this answer is helpful to you................... :( :(

Attachments:
Similar questions