Math, asked by shalinitamizh01, 9 months ago

find the find the zero of polynomial x square - 15 and verify the relation between zero and c o e f f i c i e n t s

Answers

Answered by Anonymous
25

 \large\bf\underline{Given:-}

  • p(x) = x² - 15

 \large\bf\underline {To \: find:-}

  • zeroes of the given polynomial
  • relationship between the zeroes and coefficients.

 \huge\bf\underline{Solution:-}

  • »»p(x) = x² - 15

Finding zeroes of the given polynomial:-

➝ x² - 15 = 0

➝ x² = 15

➝ x = ±√15

  • x = √15 or x = -√15

  • » p(x) = x² - 15
  • a = 1
  • b = 0
  • c = -15

 \large \star\underline{ \bf \dag \: Verification :  - }

Let α and β are the zeroes of the given polynomial.

  • α = √15
  • β = -√15

Sum of zeroes = -b/a

➝ √15 +(-√15) = 0/1

➝ √15 - √15 = 0

➝ 0 = 0

product of zeroes = c/a

➝ √15 × (-√15) = -15/1

➝ -15 = -15

So,

LHS = RHS

hence relationship is verified

Answered by Anonymous
13

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ zeroes \ of \ polynomial \ are \ -\sqrt15 \ and \sqrt15.}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{x^{2}-15}}

\sf\pink{To \ find:}

\sf{The \ zeroes \ of \ the \ polynomial.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{x^{2}-15}}

\sf{\implies{x^{2}-\sqrt15^{2}}}

\sf{According \ to \ the \ identity}

\sf{a^{2}-b^{2}=(a+b)(a-b)}

\sf{\implies{(x+\sqrt15)(x-\sqrt15)}}

\sf{\implies{x=-\sqrt15 \ or \ \sqrt15}}

\sf\purple{\tt{\therefore{The \ zeroes \ of \ polynomial \ are \ -\sqrt15 \ and \sqrt15.}}}

__________________________________

\sf\blue{\underline{\underline{Verification:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{x^{2}-15}}

\sf{Here \ a=1, \ b=0 \ and \ c=-15}

\sf{Let \ the \ zeroes \ be \ \alpha \ and \ \beta}

_______________________________

\sf{\alpha+\beta=-\sqrt15+\sqrt15}

\sf{\therefore{\alpha+\beta=0...(1)}}

\sf{\frac{-b}{a}=\frac{0}{1}}

\sf{\therefore{\frac{-b}{a}=0...(2)}}

\sf{...from \ (1) \ and \ (2)}

\boxed{\sf{Sum \ of \ zeroes=\frac{-b}{a}}}

\sf{\alpha\beta=-\sqrt15\times\sqrt15}

\sf{\therefore{\alpha\beta=-15...(3)}}

\sf{\frac{c}{a}=\frac{-15}{1}}

\sf{\therefore{\frac{c}{a}=-15...(4)}}

\sf{...from \ (3) \ and \ (4)}

\boxed{\sf{Product \ of \ zeroes=\frac{c}{a}}}

\sf{Hence, \ verified.}

Similar questions