Math, asked by csanyal4588, 1 month ago

find the finite cosine transform of (1-x/π)^2

Answers

Answered by pulakmath007
8

SOLUTION

TO DETERMINE

The finite cosine transform of

\displaystyle\sf{ { \bigg( 1 -  \frac{x}{\pi} \bigg)}^{2} }

EVALUATION

Here the given function is

\displaystyle\sf{ f(x)   = { \bigg( 1 -  \frac{x}{\pi} \bigg)}^{2}}

Hence the required finite Fourier cosine transform is

\displaystyle  \sf{F_c(n) = \int\limits_{0}^{\pi} f(x) \cos \:  \frac{n\pi x}{\pi}  \, dx }

\displaystyle  \sf{  = \int\limits_{0}^{\pi} f(x) \cos \:  nx  \, dx }

\displaystyle  \sf{  = \int\limits_{0}^{\pi} { \bigg( 1 -  \frac{x}{\pi} \bigg)}^{2} \cos \:  nx  \, dx }

\displaystyle  \sf{  =  \frac{1}{ {\pi}^{2} } \int\limits_{0}^{\pi} { \big( \pi - x \big)}^{2} \cos \:  nx  \, dx }

\displaystyle  \sf{  =  \frac{1}{ {\pi}^{2} } \int\limits_{0}^{\pi} { \big( \pi - \pi + x \big)}^{2} \cos \:  n(\pi - x)  \, dx }

\displaystyle  \sf{  =  \frac{1}{ {\pi}^{2} } \int\limits_{0}^{\pi}  {x}^{2}  \cos \:  (n\pi - nx)  \, dx }

\displaystyle  \sf{  =  \frac{1}{ {\pi}^{2} } \int\limits_{0}^{\pi}  {x}^{2}   {( -1 )}^{n} \cos \:  nx  \, dx }

\displaystyle  \sf{  =  \frac{{( -1 )}^{n}}{ {\pi}^{2} } \int\limits_{0}^{\pi}  {x}^{2}    \cos \:  nx  \, dx }

\displaystyle  \sf{  =  \frac{{( -1 )}^{n}}{ {\pi}^{2} }  \bigg[ \frac{ {x}^{2} \sin nx }{n}  \bigg]_{0}^{\pi}  - \frac{{( -1 )}^{n}}{n {\pi}^{2} } \int\limits_{0}^{\pi}  2x   \sin \:  nx  \, dx }

\displaystyle  \sf{  =  \frac{{( -1 )}^{n}}{ {\pi}^{2} }  \bigg[ \frac{ {\pi}^{2} \sin n\pi }{n}  - 0 \bigg]_{0}^{\pi}  -  \frac{{( -1 )}^{n}}{n {\pi}^{2} } \int\limits_{0}^{\pi}  2x   \sin \:  nx  \, dx }

\displaystyle  \sf{  = - \frac{{( -1 )}^{n}}{n {\pi}^{2} } \int\limits_{0}^{\pi}  2x   \sin \:  nx  \, dx  }

\displaystyle  \sf{  = - \frac{{( -1 )}^{n}}{n {\pi}^{2} } \int\limits_{0}^{\pi}  2x   \sin \:  nx  \, dx  }

 \displaystyle \sf{=   - \frac{{( -1 )}^{n}}{n {\pi}^{2} }  \bigg[  - \frac{ 2x \cos nx }{n}  \bigg]_{0}^{\pi}  - \frac{{( -1 )}^{n}}{ {n}^{2}  {\pi}^{2} } \int\limits_{0}^{\pi}     \cos \:  nx  \, dx}

 \displaystyle \sf{=   - \frac{{( -1 )}^{n}}{n {\pi}^{2} }  \bigg[  - \frac{ 2\pi \cos n\pi }{n}   + 0\bigg]_{0}^{\pi}  - \frac{{( -1 )}^{n}}{ {n}^{2}  {\pi}^{2} }   \bigg[   \frac{  \sin nx }{n}  \bigg]_{0}^{\pi} }

 \displaystyle \sf{=   - \frac{{( -1 )}^{n}}{n {\pi}^{2} }  \bigg[  - \frac{ 2\pi . {( - 1)}^{n}  }{n}   \bigg]  - \frac{{( -1 )}^{n}}{ {n}^{2}  {\pi}^{2} }   \bigg[   \frac{  \sin n\pi }{n}  - 0 \bigg] }

 \displaystyle \sf{=   \frac{{( -1 )}^{2n} \times 2\pi}{ {n}^{2}  {\pi}^{2} }   }

 \displaystyle \sf{=   \frac{ 2\pi}{ {n}^{2}  {\pi}^{2} }   }

 \displaystyle \sf{=   \frac{ 2}{ {n}^{2}  {\pi}^{} }   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Laplace transform (D²-3D+2)y=4 given y(0)=2 and y’(0)=3

https://brainly.in/question/32934012

2. the fourier cosine transform of the function f(t) is

https://brainly.in/question/34795825


amansharma264: Perfect
pulakmath007: Thank you Brother
Similar questions