Math, asked by owner38, 1 year ago

Find the first 3 terms of the series
a(n) = (n-3)/4.​

Answers

Answered by ishucutee
9

Good morning!!!!!

☺️☺️☺️✨✨✨

Solution :-

⤵️⤵️⤵️⤵️⤵️⤵️⤵️

a(n) =  \frac{n - 3}{4}  \\ a(1) =  \frac{1 - 3}{4}  =  \frac{ - 2}{4}  =  \frac{ - 1}{2}  \\ a(2) =  \frac{2 - 3}{4}  =  \frac{ - 1}{4}  \\ a(3) =  \frac{3 - 3}{4}  = 0

HOPE that it will help you ✌️✌️✌️

Follow me!! ✔️ ✔️

❤️❤️❤️❤️☺️☺️✨✨

Answered by BraɪnlyRoмan
29
\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}


To find the first 3 terms of the sequence,

a_{n} = \frac{n - 3}{4}


\bf{When \: n = 1,}

a_{1} = \frac{1 - 3}{4}

\: \: \: \: \: = \frac{ - 2}{4}

 \: \: \: \: \: = \frac{ - 1}{2}


\bf{When \: n = 2 ,}

a_{2} = \frac{2 - 3}{4}

\: \: \: \: \: = \frac{ - 1}{4}


\bf{when \: n = 3 ,}

a_{3} = \frac{3 - 3}{4}

\: \: \: \: \: = \frac{0}{4}

\: \: \: \: \: = 0


Therefore, the first 3 terms of the sequence are :

 \boxed{ \bf{ \frac{ - 1}{ \: 2} , \: \frac{ - 1}{ \: 4} \: \: and \: \: 0}}
Similar questions