Math, asked by jchandrahasini, 6 months ago

find the first order partial differentiation of cos-1 (x/y)​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{f=cos^{-1}\left(\dfrac{x}{y}\right)}

\underline{\textbf{To find:}}

\textsf{First order partial derivatives of f}

\underline{\textbf{Solution:}}

\mathsf{f=cos^{-1}\left(\dfrac{x}{y}\right)}

\implies\mathsf{\dfrac{{\partial}f}{{\partial}x}=\dfrac{-1}{1+\left(\dfrac{x}{y}\right)^2}{\times}\dfrac{1}{y}}

\implies\mathsf{\dfrac{{\partial}f}{{\partial}x}=\dfrac{-y^2}{y^2+x^2}{\times}\dfrac{1}{y}}

\implies\boxed{\mathsf{\dfrac{{\partial}f}{{\partial}x}=\dfrac{-y}{x^2+y^2}}}

\mathsf{f=cos^{-1}\left(\dfrac{x}{y}\right)}

\implies\mathsf{\dfrac{{\partial}f}{{\partial}y}=\dfrac{-1}{1+\left(\dfrac{x}{y}\right)^2}{\times}\dfrac{-x}{y^2}}

\implies\mathsf{\dfrac{{\partial}f}{{\partial}y}=\dfrac{-y^2}{y^2+x^2}{\times}\dfrac{-x}{y^2}}

\implies\boxed{\mathsf{\dfrac{{\partial}f}{{\partial}y}=\dfrac{x}{x^2+y^2}}}

\underline{\textbf{Find more:}}

Find the second order partial derivatives of F(x.y) = (3x + 2y).4​

https://brainly.in/question/31686292

If u=x³y³/x³+y³,prove that x du/dx + y du/dy=3u​

https://brainly.in/question/35340172

Answered by sadafsiddqui
1

given,

f =cos-1 (x/y)\\Find \\

First  order partial derivatives of f

f = cos-1 (x/y)\\df/dx =\frac{-1}{1+(x/y)^2} *\frac{1}{y} \\df/dx =\frac{-y^2}{y^2+x^2} *\frac{1}{y} \\df/dx = \frac{-y}{x^2 +y^2}

Similar questions