Math, asked by sl3512127, 1 month ago

find the five rational numbers between given number. 1) 2/3 & 5/3 2) 8/7 & 3/7​

Answers

Answered by Anonymous
23

Step-by-step explanation:

 \rm \: 1) \:  \:  \frac{2}{3}  \: and \:  \frac{5}{3}

 \scriptsize \rm On \: multiplying \:  the \:  numerator \:  and \:  denominator \:  of \:  \frac{2}{3}  \: and \:   \frac{5}{3}  \: by \:  2.

 \rm  \frac{2 \times 2}{3 \times 2} =  \frac{4}{6}   \: , \:  \frac{5 \times 2}{3 \times 2}  =  \frac{10}{6}

 \frac{4}{6} , \frac{5}{6} , \frac{6}{6} , \frac{7}{6} , \frac{8}{6} , \frac{9}{6} , \frac{10}{6}

 \scriptsize \rm Hence \:  there \:  are  \: five  \: rational \:  numbers \:  between  \:  \frac{2}{3}  \:  and \:   \frac{5}{3}  \:  is -</p><p>

  \frac{5}{6} , \frac{6}{6} , \frac{7}{6} , \frac{8}{6} , \frac{9}{6}

 \rm  2) \:  \: \frac{8}{7}  \: and \:  \frac{3}{7}

 \scriptsize \rm On \: multiplying \:  the \:  numerator \:  and \:  denominator \:  of \:  \frac{3}{7}  \: and \:   \frac{8}{7}  \: by \:  2.

 \rm  \frac{3 \times 2}{7 \times 2}  =  \frac{6}{14}  \: , \:  \frac{8 \times 2}{7 \times 2}  =  \frac{16}{14} </p><p>

 \rm  \frac{6}{14} , \frac{7}{14}, \frac{8}{14}  , \frac{9}{14} , \frac{10}{14} , \frac{11}{14} , \frac{12}{14} , \frac{13}{14} , \frac{14}{14}  ,\frac{15}{14} , \frac{16}{14}

 \scriptsize \rm Hence \:  there \:  are  \: five  \: rational \:  numbers \:  between  \:  \frac{3}{7}  \:  and \:   \frac{8}{7}  \:  is -</p><p>

 \rm\frac{7}{14}, \frac{8}{14}  , \frac{9}{14} , \frac{10}{14} ,... ,\frac{15}{14}

I hope it is helpful

Answered by Anonymous
20

Step-by-step explanation:

 \rm \: 1) \:  \:  \frac{2}{3}  \: and \:  \frac{5}{3}

 \scriptsize \rm On \: multiplying \:  the \:  numerator \:  and \:  denominator \:  of \:  \frac{2}{3}  \: and \:   \frac{5}{3}  \: by \:  2.

 \rm  \frac{2 \times 2}{3 \times 2} =  \frac{4}{6}   \: , \:  \frac{5 \times 2}{3 \times 2}  =  \frac{10}{6}

 \frac{4}{6} , \frac{5}{6} , \frac{6}{6} , \frac{7}{6} , \frac{8}{6} , \frac{9}{6} , \frac{10}{6}

 \scriptsize \rm Hence \:  there \:  are  \: five  \: rational \:  numbers \:  between  \:  \frac{2}{3}  \:  and \:   \frac{5}{3}  \:  is -</p><p>

  \frac{5}{6} , \frac{6}{6} , \frac{7}{6} , \frac{8}{6} , \frac{9}{6}

 \rm  2) \:  \: \frac{8}{7}  \: and \:  \frac{3}{7}

 \scriptsize \rm On \: multiplying \:  the \:  numerator \:  and \:  denominator \:  of \:  \frac{3}{7}  \: and \:   \frac{8}{7}  \: by \:  2.

 \rm  \frac{3 \times 2}{7 \times 2}  =  \frac{6}{14}  \: , \:  \frac{8 \times 2}{7 \times 2}  =  \frac{16}{14} </p><p>

 \rm  \frac{6}{14} , \frac{7}{14}, \frac{8}{14}  , \frac{9}{14} , \frac{10}{14} , \frac{11}{14} , \frac{12}{14} , \frac{13}{14} , \frac{14}{14}  ,\frac{15}{14} , \frac{16}{14}

 \scriptsize \rm Hence \:  there \:  are  \: five  \: rational \:  numbers \:  between  \:  \frac{3}{7}  \:  and \:   \frac{8}{7}  \:  is -</p><p>

 \rm\frac{7}{14}, \frac{8}{14}  , \frac{9}{14} , \frac{10}{14} ,... ,\frac{15}{14}

I hope it is helpful

Answered by Anonymous
21

Step-by-step explanation:

 \rm \: 1) \:  \:  \frac{2}{3}  \: and \:  \frac{5}{3}

 \scriptsize \rm On \: multiplying \:  the \:  numerator \:  and \:  denominator \:  of \:  \frac{2}{3}  \: and \:   \frac{5}{3}  \: by \:  2.

 \rm  \frac{2 \times 2}{3 \times 2} =  \frac{4}{6}   \: , \:  \frac{5 \times 2}{3 \times 2}  =  \frac{10}{6}

 \frac{4}{6} , \frac{5}{6} , \frac{6}{6} , \frac{7}{6} , \frac{8}{6} , \frac{9}{6} , \frac{10}{6}

 \scriptsize \rm Hence \:  there \:  are  \: five  \: rational \:  numbers \:  between  \:  \frac{2}{3}  \:  and \:   \frac{5}{3}  \:  is -</p><p>

  \frac{5}{6} , \frac{6}{6} , \frac{7}{6} , \frac{8}{6} , \frac{9}{6}

 \rm  2) \:  \: \frac{8}{7}  \: and \:  \frac{3}{7}

 \scriptsize \rm On \: multiplying \:  the \:  numerator \:  and \:  denominator \:  of \:  \frac{3}{7}  \: and \:   \frac{8}{7}  \: by \:  2.

 \rm  \frac{3 \times 2}{7 \times 2}  =  \frac{6}{14}  \: , \:  \frac{8 \times 2}{7 \times 2}  =  \frac{16}{14} </p><p>

 \rm  \frac{6}{14} , \frac{7}{14}, \frac{8}{14}  , \frac{9}{14} , \frac{10}{14} , \frac{11}{14} , \frac{12}{14} , \frac{13}{14} , \frac{14}{14}  ,\frac{15}{14} , \frac{16}{14}

 \scriptsize \rm Hence \:  there \:  are  \: five  \: rational \:  numbers \:  between  \:  \frac{3}{7}  \:  and \:   \frac{8}{7}  \:  is -</p><p>

 \rm\frac{7}{14}, \frac{8}{14}  , \frac{9}{14} , \frac{10}{14} ,... ,\frac{15}{14}

I hope it is helpful

Answered by Anonymous
21

Step-by-step explanation:

 \rm \: 1) \:  \:  \frac{2}{3}  \: and \:  \frac{5}{3}

 \scriptsize \rm On \: multiplying \:  the \:  numerator \:  and \:  denominator \:  of \:  \frac{2}{3}  \: and \:   \frac{5}{3}  \: by \:  2.

 \rm  \frac{2 \times 2}{3 \times 2} =  \frac{4}{6}   \: , \:  \frac{5 \times 2}{3 \times 2}  =  \frac{10}{6}

 \frac{4}{6} , \frac{5}{6} , \frac{6}{6} , \frac{7}{6} , \frac{8}{6} , \frac{9}{6} , \frac{10}{6}

 \scriptsize \rm Hence \:  there \:  are  \: five  \: rational \:  numbers \:  between  \:  \frac{2}{3}  \:  and \:   \frac{5}{3}  \:  is -</p><p>

  \frac{5}{6} , \frac{6}{6} , \frac{7}{6} , \frac{8}{6} , \frac{9}{6}

 \rm  2) \:  \: \frac{8}{7}  \: and \:  \frac{3}{7}

 \scriptsize \rm On \: multiplying \:  the \:  numerator \:  and \:  denominator \:  of \:  \frac{3}{7}  \: and \:   \frac{8}{7}  \: by \:  2.

 \rm  \frac{3 \times 2}{7 \times 2}  =  \frac{6}{14}  \: , \:  \frac{8 \times 2}{7 \times 2}  =  \frac{16}{14} </p><p>

 \rm  \frac{6}{14} , \frac{7}{14}, \frac{8}{14}  , \frac{9}{14} , \frac{10}{14} , \frac{11}{14} , \frac{12}{14} , \frac{13}{14} , \frac{14}{14}  ,\frac{15}{14} , \frac{16}{14}

 \scriptsize \rm Hence \:  there \:  are  \: five  \: rational \:  numbers \:  between  \:  \frac{3}{7}  \:  and \:   \frac{8}{7}  \:  is -</p><p>

 \rm\frac{7}{14}, \frac{8}{14}  , \frac{9}{14} , \frac{10}{14} ,... ,\frac{15}{14}

I hope it is helpful

Similar questions