Science, asked by vaibhu3117, 7 months ago

find the focal length of the convex lens which produces a real image at 60 cm from the lens when an object is placed at 40 in front of the lens​

Answers

Answered by siya125
5

Explanation:

given \\ for \: lens \: 1

image \: distance \\ v = 60 \: cm

let \: object \: distance \: be \: u

 \frac{1}{f1}  =  \frac{1}{v}  -  \frac{1}{u}

 \frac{1}{f1}  =  \frac{1}{60}   +   \frac{1}{u}

 \frac{1}{f1}  =  \frac{u + 60}{60u} .........(1)

when \: lenses \: are \: comined \: the \: image \: distance \: v2 = 60 - 40 = 20cm

 \frac{1}{f}  =  \frac{1}{f1}  +  \frac{1}{f2}  =  \frac{1}{v2}  -  \frac{1}{u}

 ⤇\: \frac{1}{f1}  +  \frac{1}{f2}  =  \frac{1}{20}  +  \frac{1}{u}

⤇ \frac{u + 60}{60u}  +  \frac{1}{f2}  =  \frac{1}{20}  +  \frac{1}{u}

⤇\frac{1}{f2}  =  \frac{u + 20}{20u}  -  \frac{u + 60}{60u}

 \frac{1}{f2}  =  \frac{60 {u }^{2 } + 1200u  - 20 {u}^{2}   - 1200u}{ {1200u}^{2} }

⤇\frac{40 {u}^{2} }{1200 {u}^{2} }

⤇f2 = 30cm

hope \: it \: is \: helpful \: to \: u

Similar questions