Math, asked by sritharezhilarasi, 10 months ago

Find the foci and vertices of the hyperbola 4x - 24x - 25y + 250y - 489 = 0​

Answers

Answered by MaheswariS
3

\textbf{Given:}

4x^2-24x-25y^2+250y-489= 0

4(x^2-6x)-25(y^2-10y)-489= 0

\text{To make them, intems of perfect square}

4((x^2-6x+9)-9)-25((y^2-10y+25)-25)-489= 0

4((x-3)^2-9)-25((y-5)^2-25)-489= 0

4(x-3)^2-36-25(y-5)^2+625-489= 0

4(x-3)^2-25(y-5)^2+100= 0

25(y-5)^2-4(x-3)^2=100

\text{Divide bothsides by 100, we get}

\displaystyle\frac{(y-5)^2}{4}-\frac{(x-3)^2}{25}=1

\text{This equation of the form $\displaystyle\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1$}

\text{Here, $a^2=4$ and $b^2=25$}

\text{comparing, we get Centre (h,k)=(3,5)}

\bf\;ae=\sqrt{a^2+b^2}

\implies\;ae=\sqrt{4+25}

\implies\;ae=\sqrt{29}

\text{Foci are (h,k-ae) and (h,k+ae)}

\implies(3,5-\sqrt{29})\;\text{and}\;(3,5+\sqrt{29})

\text{Vertices are (h,k-a) and (h,k+a)}

\implies(3,5-2)\;\text{and}\;(3,5+2})

\implies(3,3)\;\text{and}\;(3,7})

\therefore\textbf{Foci are $\bf\,(3,5-\sqrt{29})$ and $\bf\,(3,5+\sqrt{29})$ and}

\textbf{Vertices are (3,3) and (3,7)}

Find more:

The eccentricity of the conic

36x^2+144y^2-36x-96y-119=0

https://brainly.in/question/15964330

Answered by Anonymous
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Center=(7,-5)}}}

\green{\tt{\therefore{Vertices=(7,-13)\:and\:(7,3)}}}

\green{\tt{\therefore{Foci=(7,\pm2\sqrt{41}-5)}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies 16 {x}^{2}  - 224x + 25 {y}^{2}  + 250y - 191 = 0 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Center =  ?\\  \\ \tt:  \implies Foci=? \\  \\ \tt:  \implies Vertices =?  \\  \\ \tt:  \implies Co-vertices =?

• According to given question :

 \bold{As \: we \: know \:that} \\  \tt:  \implies 16 {x}^{2}   - 224x +   25 {y}^{2}  + 250y   - 191 = 0 \\  \\ \tt:  \implies  {(4x)}^{2}  +  {28}^{2}  - 224x  -  {28}^{2}  +  {(5y )}^{2}  +  {25}^{2} + 250y -  {25}^{2}   - 191 = 0 \\  \\ \tt:  \implies  {(4x - 28)}^{2}  +( 5 {y + 25)}^{2}  = 191 + 625 + 784 \\  \\ \tt:  \implies   {(4x - 28)}^{2}  +  {(5y  + 25)}^{2}  = 1600 \\  \\ \tt:  \implies  \frac{ {(4x - 28)}^{2} }{1600}  +  \frac{ {(5y  + 25)}^{2} }{1600}  = 1 \\  \\ \tt:  \implies  \frac{16(x - 7)^{2} }{1600}  +  \frac{25( {y + 5)}^{2} }{1600}  = 1 \\  \\ \tt:  \implies  \frac{(x - 7 )^{2} }{100}  +  \frac{(y + 5)^{2} }{64}  = 1 \\  \\ \tt:  \implies  \frac{ {(x - 7)}^{2} }{ {10}^{2} }  +  \frac{ {(y + 5)}^{2} }{ {8}^{2} }  = 1

  \text{It \: is \: in \: the \: form \: of} \\  \\  \tt:  \implies  \frac{ {X}^{2} }{ {a}^{2} }   +  \frac{ {Y}^{2} }{ {b}^{2} }  = 1 \\  \\   \bold{As \: we \: know \: that} \\  \tt:  \implies  x = 0 \\  \\  \tt:  \implies x - 7 = 0 \\  \\ \tt:  \implies x = 7 \\  \\ \tt:  \implies Y = 0 \\  \\ \tt:  \implies y + 5 = 0 \\  \\ \tt:  \implies y =  - 5 \\  \\   \green{\tt \therefore Center(7,- 5)} \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies X = 0 \\  \\ \tt:  \implies x - 7 = 0 \\  \\ \tt:  \implies x = 7

\tt:  \implies Y =  \pm b \\  \\ \tt:  \implies y  + 5 =   \pm 8 \\  \\ \tt:  \implies y =  -13 \: and \: 3 \\  \\   \green{\tt  \therefore Vertex(7,-13) \: and \: (7,3)} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  {a}^{2}  =  {b}^{2} ( {e}^{2}  - 1) \\  \\ \tt:  \implies  100 = 64( {e}^{2}  - 1) \\  \\ \tt:  \implies  \frac{100}{64}  =  {e}^{2}  - 1 \\  \\ \tt:  \implies  \frac{25}{16}   + 1 =  {e}^{2}  \\  \\ \tt:  \implies e =  \frac{ \sqrt{41} }{4}  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies x = 7 \\  \\ \tt:  \implies Y =  \pm be \\  \\ \tt:  \implies y + 5 =  \pm 8 \times  \frac{ \sqrt{41} }{4}  \\  \\ \tt:  \implies y  + 5=  \pm 2 \sqrt{41}  \\  \\ \tt:  \implies y =  \pm 2 \sqrt{41}  - 5 \\  \\   \green{\tt \therefore Foci (7,\pm  2\sqrt{41}  - 5)}

Similar questions