Math, asked by sanumjha, 4 months ago

Find the following integrals :-

(1). \: [tex\] \int \frac{dx}{
{x}^{2} - 16} \\ \\ (2). \: \int \frac{dx}{ \sqrt{2x - {x}^{2} } } [tex/]​

Answers

Answered by shadowsabers03
29

1. Given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{dx}{x^2-16}

\displaystyle\longrightarrow I=\int\dfrac{dx}{(x-4)(x+4)}

Multiplying and dividing the integrand by 4 - (- 4) = 8,

\displaystyle\longrightarrow I=\dfrac{1}{8}\int\dfrac{8}{(x-4)(x+4)}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{8}\int\dfrac{(x+4)-(x-4)}{(x-4)(x+4)}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{8}\int\left(\dfrac{1}{x-4}-\dfrac{1}{x+4}\right)\ dx

\displaystyle\longrightarrow I=\dfrac{1}{8}\big[\log|x-4|-\log|x+4|\big]+C

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{8}\log\left|\dfrac{x-4}{x+4}\right|+C}}

2. Given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{2x-x^2}}

Pre-adding and subtracting (2/2)² = 1 in the denominator surd,

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{1-1+2x-x^2}}

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{1-(x^2-2x+1)}}

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{1^2-(x-1)^2}}

We have,

  • \displaystyle\int\dfrac{dx}{\sqrt{c^2-(ax+b)^2}}=\dfrac{1}{a}\,\sin^{-1}\left(\dfrac{ax+b}{c}\right)+C

Here,

  • a=1
  • b=-1
  • c=1

Hence the integral becomes,

\displaystyle\longrightarrow I=\dfrac{1}{1}\,\sin^{-1}\left(\dfrac{x-1}{1}\right)+C

\displaystyle\longrightarrow\underline{\underline{I=\sin^{-1}\left(x-1\right)+C}}


amansharma264: brilliant
Answered by mathdude500
44

\begin{gathered}\Large{\bold{\green{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \: \rm :\implies\: \boxed{ \pink{ \bf \:  \int \frac{dx}{</p><p>{x}^{2} -  {a}^{2} }\:  =  \tt \: \dfrac{1}{2a}  log(\dfrac{x - a}{x + a} )   \: +  \: c}}

(2). \: \rm :\implies\: \boxed{ \pink{ \bf \:  \int \: \dfrac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  \:  =  \tt \: {sin}^{ - 1}\dfrac{x}{a}  \:  +  \: c   }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution - }}

  \bf \: (1). \: \int \dfrac{dx}{</p><p>{x}^{2} - 16}

\rm :\implies\:\int \dfrac{dx}{</p><p>{x}^{2} -  {4}^{2} }

\rm :\implies\:\dfrac{1}{2 \times 4} \:   log(\dfrac{x \:  - \:  4}{x  \: + \:  4} )   \: +  \: c

\rm :\implies\:\dfrac{1}{8}   \: log(\dfrac{x \:  -  \: 4}{x \:  +  \: 4} )   \: +  \: c

\rm :\implies\: \boxed{ \green{ \bf \:  \int \dfrac{dx}{</p><p>{x}^{2} - 16}\:  =  \tt \: \dfrac{1}{8}  log(\dfrac{x - 4}{x + 4} )   \: +  \: c}}

─━─━─━─━─━─━─━─━─━─━─━─━─

 \bf \: (2). \: \int \dfrac{dx}{ \sqrt{2x - {x}^{2} } }

\rm :\implies\:\int \dfrac{dx}{ \sqrt{ -( {x}^{2}  - 2x)} }

\rm :\implies\:\int \dfrac{dx}{ \sqrt{ -( {x}^{2} - 2x + 1 - 1) } }

\rm :\implies\:\int \dfrac{dx}{ \sqrt{ - \bigg( {(x - 1)}^{2} - 1 \bigg) } }

\rm :\implies\:\int \dfrac{dx}{ \sqrt{1 - {(x - 1)}^{2} } }

\rm :\implies\: {sin}^{ - 1} \dfrac{x - 1}{1}  + c

\rm :\implies\: {sin}^{ - 1} (x - 1) + c

\rm :\implies\: \boxed{ \blue{ \bf \:   \: \int \frac{dx}{ \sqrt{2x - {x}^{2} } }\:  =  \tt \:  {sin}^{ - 1}(x - 1)  \:  +  \: c}}

Similar questions