Math, asked by shivansh14yadav, 6 months ago

find the following integrals​

Attachments:

Answers

Answered by kaushik05
5

To integrate :

 \star \:  \frac{dx}{ \sqrt{2x -  {x}^{2} } }  \\

Here , Add and subtract 1 in denominator :

 \implies \:  \frac{dx}{ \sqrt{2x -  {x}^{2} + 1 - 1 } }  \\  \\  \implies \:  \frac{dx}{ \sqrt{1 -  {x}^{2}  + 2x - 1} }  \\  \\  \implies \:  \frac{dx}{ \sqrt{ 1 - ( {x}^{2}   - 2x + 1)} }  \\  \\  \implies \:  \frac{dx}{ \sqrt{ {1}^{2}  - ( {x - 1)}^{2} } }  \\  \\  \implies \:  { \sin}^{ - 1}  \frac{x - 1}{1}  + c \\  \\  \implies \:  { \sin}^{ - 1} (x - 1) + c

Formula used:

 \star \boxed{  \red{\bold{  \int \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  { \sin}^{ - 1}  \frac{x}{a}  + c}}} \\

Answered by Anonymous
2

Given ,

The function is

 \tt \frac{1}{ \sqrt{2x -  {x}^{2} } }

Here , the quadratic equation is

  • 2x - x²

It can be written as

2x - x² - 1 + 1

(1)² - (x - 1)²

Thus ,

 \tt \implies \int{ \tt \frac{1}{ \sqrt{2x -  {x}^{2} } } \: dx }

  \tt \implies\int{ \tt \frac{1}{ \sqrt{ {(1)}^{2} -  {(x - 1)}^{2} }   } \: dx }

Let , x - 1 = t => dx = dt

Thus ,

 \tt \implies \int{ \tt \frac{1}{ \sqrt{ {(1)}^{2} -  {(t)}^{2} }   } \: dt }

 \tt \implies {sin}^{ - 1}  \frac{t}{1}  + c

 \tt \implies {sin}^{ - 1}t + c

Since , t = x - t

 \tt \implies {sin}^{ - 1} ( x - 1 )+ c

Remmember :

 \tt \implies \int{ \tt \frac{1}{ \sqrt{ {(a)}^{2} -  {(x)}^{2} }   } \: dx} =  {sin}^{ - 1}  \frac{x}{a}  + c

____________ Keep Smiling

Similar questions