Math, asked by AnanyaBaalveer, 23 hours ago

Find the following integrals. ​

Attachments:

Answers

Answered by Talpadadilip783
1

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

Given,

 \displaystyle\rm \int \frac{(2x - 1)(x + 3)}{6}   \: dx

Use Constant Factor Rule:

 \displaystyle \rm\int cf(x) \, dx=c\int f(x) \, dx

 \\  \rm  \implies \: \frac{1}{6}\int (2x-1)(x+3) \, dx

  \\  \rm\implies  \frac{1}{6}  \int {2x}^{2}  + 5x - 3 \: dx

Use Power Rule:

 \displaystyle  \rm\int {x}^{n} \, dx=\frac{{x}^{n+1}}{n+1}+C

 \\  \rm\frac{{x}^{3}}{9}+\frac{5{x}^{2}}{12}-\frac{x}{2}+C

 \pmb{ \red{ \boxed{\displaystyle\rm \int \frac{(2x - 1)(x + 3)}{6}   \: dx = \frac{{x}^{3}}{9}+\frac{5{x}^{2}}{12}-\frac{x}{2}+C}}}

Answered by mathdude500
3

\rm Question  :- Find the following integrals

\rm \: a. \:  \:  \:  \: \displaystyle\int\rm \dfrac{(2x - 1)(x + 3)}{6} \: dx \\

\rm \: b. \:  \:  \:  \: \displaystyle\int_{4}^{9}\rm  \bigg(\dfrac{1}{ \sqrt{x} }   - 2\bigg) \: dx \\

\large\underline{\sf{Solution-a}}

Given integral is

\rm \: \displaystyle\int\rm  \frac{(2x - 1)(x + 3)}{6} \: dx \\

can be rewritten as

\rm \:  =  \: \dfrac{1}{6}\displaystyle\int\rm (2x - 1)(x + 3)dx \\

\rm \:  =  \: \dfrac{1}{6}\displaystyle\int\rm (2 {x}^{2}  - x + 6x - 3)dx \\

\rm \:  =  \: \dfrac{1}{6}\displaystyle\int\rm (2 {x}^{2}+ 5x - 3)dx \\

\rm \:  =  \: \dfrac{1}{6}\bigg[2 \times \dfrac{ {x}^{3} }{3}  + 5 \times  \frac{ {x}^{2} }{2} - 3x\bigg]  + c \\

\rm \:  =  \: \dfrac{1}{6}\bigg[\dfrac{ 2{x}^{3} }{3}  +  \frac{5 {x}^{2} }{2} - 3x\bigg]  + c \\

\rm \:  =  \: \dfrac{{x}^{3} }{9}  +  \frac{5 {x}^{2} }{12} -  \frac{x}{2}  + c \\

Hence,

\boxed{ \rm{ \:\rm \displaystyle\int\rm  \frac{(2x - 1)(x + 3)}{6}dx = \dfrac{{x}^{3} }{9}  +  \frac{5 {x}^{2} }{12} -  \frac{x}{2}  + c \: }} \\

\large\underline{\sf{Solution-b}}

Given integral is

\rm \: \displaystyle\int_{4}^{9}\rm  \bigg(\dfrac{1}{ \sqrt{x} }   - 2\bigg) \: dx \\

can be rewritten as

\rm \: =  \:  \displaystyle\int_{4}^{9}\rm  \bigg( {(x)}^{ -  \frac{1}{2} }    - 2\bigg) \: dx \\

\rm \:  =  \: \bigg[\dfrac{ {x}^{ -  \frac{1}{2}  + 1} }{ -  \frac{1}{2} + 1} - 2x \bigg]_{4}^{9} \\

\rm \:  =  \: \bigg[\dfrac{ {x}^{\frac{1}{2}} }{\frac{1}{2}} - 2x \bigg]_{4}^{9} \\

\rm \:  =  \: \bigg[2 \sqrt{x}  - 2x \bigg]_{4}^{9} \\

\rm \:  =  \:2 \bigg[\sqrt{x}  - x \bigg]_{4}^{9} \\

\rm \:  =  \:2 \bigg[(\sqrt{9} -  \sqrt{4})   - (9 - 4) \bigg] \\

\rm \:  =  \:2 \bigg[3 - 2  -5 \bigg] \\

\rm \:  =  \:2 \bigg[3 - 7 \bigg] \\

\rm \:  =  \:2  \times ( - 4) \\

\rm \:  =  \:  -  \: 8 \\

Hence,

\rm\implies \:\rm \boxed{ \rm{ \:\: \displaystyle\int_{4}^{9}\rm  \bigg(\dfrac{1}{ \sqrt{x} }   - 2\bigg) \: dx  \:  =  -  \: 8 \: }}\\

\rule{190pt}{2pt}

Formula Used :-

\boxed{ \rm{ \:\displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n}  + 1}{n + 1}  \:  +  \: c \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions