Math, asked by sanumjha, 4 months ago

Find the following integrals :-

(1). \: \int \frac{dx}{\  \textless \ br /\  \textgreater \  {x}^{2}  - 16}  \\  \\ (2). \: \int \frac{dx}{ \sqrt{2x -  {x}^{2} } }

Answers

Answered by mathdude500
3

\begin{gathered}\Large{\bold{\green{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \: \rm :\implies\: \boxed{ \pink{ \bf \:  \int\dfrac{dx}{ {x}^{2}  -  {a}^{2} }  \:  =  \tt \: \dfrac{1}{2a}  log(\dfrac{x - a}{x + a} )   \: +  \: c}}

(2). \: \rm :\implies\: \boxed{ \pink{ \bf \:   \int \: \dfrac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } } \:  =  \tt \:  {sin}^{ - 1} \dfrac{x}{a} \:  +  \: c }}

\large\underline\purple{\bold{Solution - }}

 \bf \: (1). \:  \int \: \dfrac{dx}{ {x}^{2}  - 16}

\rm :\implies\:\int \: \dfrac{dx}{ {x}^{2}  -  {4}^{2} }

\rm :\implies\:\dfrac{1}{2 \times 4}  \:  log(\dfrac{x \:  - \:  4}{x  \: +  \: 4} )   \: +  \: c

\rm :\implies\:\dfrac{1}{8} \:   log(\dfrac{x  \: -  \: 4}{x  \: +  \: 4} )   \: +  \: c

\rm :\implies\: \boxed{ \green{ \bf \:  \int \: \dfrac{dx}{ {x}^{2}  - 16} \:  =  \tt \:\dfrac{1}{8}  log(\dfrac{x - 4}{x + 4} )   \: +  \: c }}

 \bf \: (2). \:  \int \: \dfrac{dx}{ \sqrt{2x -  {x}^{2} } }

\rm :\implies\:\int \dfrac{dx}{ \sqrt{-({x}^{2}  - 2x)} }

\rm :\implies\:\int \dfrac{dx}{ \sqrt{ - ( {x}^{2} - 2x + 1 - 1) } }

\rm :\implies\: \int \: \dfrac{dx}{ \sqrt{ -  \bigg( {(x - 1)}^{2} - 1 \bigg) } }

\rm :\implies\: \int \: \dfrac{dx}{ \sqrt{1 -  {(x - 1)}^{2} } }

\rm :\implies\: {sin}^{ - 1} \dfrac{x - 1}{1}  \:  +  \: c

\rm :\implies\: {sin}^{ - 1} (x - 1) + c

\rm :\implies\: \boxed{ \pink{ \bf \: \int \dfrac{dx}{ \sqrt{2x - {x}^{2} } } \:  =  \tt \: {sin}^{ - 1} (x - 1)  \: +  \: c}}

Similar questions