Math, asked by tanishka96, 1 year ago

find the following product: (x^2-1) ( x^4+x^2+1)​

Answers

Answered by AbhijithPrakash
4

Answer:

\left(x^2-1\right)\left(x^4+x^2+1\right):\quad x^6-1

Step-by-step explanation:

\left(x^2-1\right)\left(x^4+x^2+1\right)

\gray{\mathrm{Distribute\:parentheses}}

=x^2x^4+x^2x^2+x^2\cdot \:1+\left(-1\right)x^4+\left(-1\right)x^2+\left(-1\right)\cdot \:1

\gray{\mathrm{Apply\:minus-plus\:rules}}

\gray{+\left(-a\right)=-a}

=x^4x^2+x^2x^2+1\cdot \:x^2-1\cdot \:x^4-1\cdot \:x^2-1\cdot \:1

\gray{\mathrm{Simplify}\:x^4x^2+x^2x^2+1\cdot \:x^2-1\cdot \:x^4-1\cdot \:x^2-1\cdot \:1}

x^4x^2+x^2x^2+1\cdot \:x^2-1\cdot \:x^4-1\cdot \:x^2-1\cdot \:1

\gray{\mathrm{Group\:like\:terms}}

=x^4x^2-1\cdot \:x^4+x^2x^2+1\cdot \:x^2-1\cdot \:x^2-1\cdot \:1

\gray{\mathrm{Add\:similar\:elements:}\:1\cdot \:x^2-1\cdot \:x^2=0}

=x^4x^2-1\cdot \:x^4+x^2x^2-1\cdot \:1

\gray{x^4x^2=x^6}

\gray{1\cdot \:x^4=x^4}

\gray{x^2x^2=x^4}

\gray{1\cdot \:1=1}

=x^6-x^4+x^4-1

\gray{\mathrm{Add\:similar\:elements:}\:-x^4+x^4=0}

=x^6-1

Similar questions