Math, asked by rajeevkumar268635, 1 year ago

Find the following products : (1/2xsquare +ysquare) (xsquare-1/2ysquare​

Answers

Answered by DevyaniKhushi
2

( \frac{1}{2} {x}^{2} +  {y}^{2}  )( {x}^{2} -  \frac{1}{2} {y}^{2} ) \\  \\  \frac{1}{2}{x}^{2}({x}^{2} -  \frac{1}{2} {y}^{2} ) +  {y}^{2} ({x}^{2} -  \frac{1}{2} {y}^{2} ) \\  \\  \frac{ {x}^{4} }{2}  -  \frac{ {x}^{2} {y}^{2} }{4}  +  {x}^{2} {y}^{2}  -  \frac{ {y}^{4} }{2}  \\  \\  \frac{ {x}^{4} }{2} -  \frac{ {y}^{4} }{2} - (\frac{ {x}^{2} {y}^{2} }{4}  +  {x}^{2} {y}^{2}) \\  \\ \frac{ {x}^{4} }{2} -  \frac{ {y}^{4} }{2} - ( \frac{ {x}^{2}  {y}^{2}  +  {4x}^{2}  {y}^{2} }{4} ) \\  \\ \frac{ {x}^{4} }{2} -  \frac{ {y}^{4} }{2} -( \frac{ {5x}^{2}  {y}^{2} }{4} ) \\  \\ { \boxed{ \red{\frac{ {x}^{4} }{2} -  \frac{ {y}^{4} }{2} -  \frac{ {5x}^{2} {y}^{2}  }{4} \:  \: or \:   \: \frac{1}{2} {x}^{4} -  \frac{1}{2} {y}^{4}   -  \frac{1}{4} {x}^{2} {y}^{2} }}} \\  \\  \frac{ {2x}^{4}  -   {2y}^{4} -  {5x}^{2}  {y}^{2}   }{4}  =  { \red{ \boxed{\frac{1}{4}( {2x}^{4}  -   {2y}^{4} -  {5x}^{2}  {y}^{2} )}}} \\

Similar questions