Math, asked by tapandalui7, 10 months ago

Find the following products (a-3/5) (a-1/3)​

Answers

Answered by dhrupaddeka
11

Answer:

a² + -14a /15 + 3/15

Step-by-step explanation:

(a - 3/5 ) ( a - 1/3)

= a² + ( -3/5 - 1/3 )a + (-3/5 × -1/3 )

= a² + ( -9 - 5/ 15 ) a + 3/15

= a² + -14a /15 + 3/15

Answered by Anonymous
21

Answer:

 \boxed{{a}^{2}  -  \frac{14a}{15}  +  \frac{1}{5} }

Step-by-step explanation:

 =  > (a -  \frac{3}{5} )(a -  \frac{1}{3} ) \\  \\  =  > a(a -  \frac{1}{3} ) -  \frac{3}{5} (a -  \frac{1}{3} ) \\  \\  =  > (a  \times a) - (a \times  \frac{1}{3} )   +  (( -  \frac{3}{5} ) \times a) - (( -  \frac{ \cancel{3}}{5}  \times  \frac{1}{ \cancel{3}} ) \\  \\  =  >  {a}^{2}  -  \frac{a}{3}   + ( -  \frac{3a}{5} ) - ( -  \frac{1}{5} ) \\  \\  =  >  {a}^{2}  -  \frac{a}{3}   -  \frac{3a}{5}  +  \frac{1}{5}  \\  \\  =  >  {a}^{2}  -  (\frac{a}{3}  \times  \frac{5}{5} ) - ( \frac{3a}{5}  \times  \frac{3}{3} ) +  \frac{1}{5}  \\  \\  =  >  {a}^{2}  -  \frac{5a}{15}  -  \frac{9a}{15}  +  \frac{1}{5}  \\  \\  =  >  {a}^{2} +   \frac{( - 5a - 9a)}{15}  +  \frac{1}{5}  \\  \\  =  >  {a}^{2}   + ( -  \frac{14a}{15} ) +  \frac{1}{5}  \\  \\  =  >  {a}^{2}  -  \frac{14a}{15}  +  \frac{1}{5}

Similar questions