Math, asked by sanjaymishra2302, 8 months ago

find the following products and verify the result, for x = -1, y= 2
please help me I request you please on today

Attachments:

Answers

Answered by droupadisinghhs2
1

Step-by-step explanation:

this is my answer hope it will be helpful

Attachments:
Answered by mysticd
1

 Given \: \Big( x^{2} - \frac{1}{2x^{2}}\big) \Big( \frac{1}{3}x^{2} - \frac{1}{x^{2}}\big)

 =x^{2} \Big( \frac{1}{3}x^{2} - \frac{1}{x^{2}}\big)-\frac{1}{2x^{2}} \Big( \frac{1}{3}x^{2} - \frac{1}{x^{2}}\big)

 =\frac{x^{4}}{3} + 1 - \frac{1}{6} -\frac{1}{2x^{4}}

Therefore.,

 \red{ \Big( x^{2} - \frac{1}{2x^{2}}\big) \Big( \frac{1}{3}x^{2} - \frac{1}{x^{2}}\big)}

 \green { = \frac{x^{4}}{3} + 1 - \frac{1}{6} -\frac{1}{2x^{4}}}

Verification:

 If \: x = -1 \: then

 LHS = \Big[ (-1)^{2} - \frac{1}{2(-1)^{2}}\Big][ \frac{1}{3} \times (-1)^{2} + \frac{1}{(-1)^{2}}]

 = \Big( 1 - \frac{1}{2}\Big) \Big( \frac{1}{3} + 1 \Big)

 = \frac{1}{2} \times \frac{4}{3}

 = \frac{2}{3} \: --(1)

 RHS =  \frac{(-1)^{4}}{3} + 1 - \frac{1}{6} - \frac{1}{2(-1)^{4}}

 = \frac{1}{3} + 1 - \frac{1}{6} - \frac{1}{2}

 = \frac{ 2+6-1-3}{6}

 =\frac{4}{6}

 = \frac{2}{3} \: --(2)

Therefore.,

 LHS = RHS

•••♪

Similar questions