Math, asked by rajkumar9388, 6 months ago

find the following products of the following

Attachments:

Answers

Answered by Anonymous
2

Answer:

There are so many questions so I will solve only some of these questions.

1.)(x + 7)( {x}^{2}  - 3x + 2) \\  = x( {x}^{2}  - 3x + 2)  + 7( {x}^{2}  - 3x + 2) \\  =  {x}^{3}  - 3{x}^{2}  + 3x + 7 {x}^{2}  - 21x + 14 \\  =  {x}^{3}  - 3 {x}^{2}  + 7 {x}^{2}  + 3x - 21x + 14 \\  =  {x}^{3}  + 4 {x}^{2}  - 18x + 14

2.) , 3.) , 4.) ,6.) and 7.) part are same as 1.) that I have soved above .

5.)(2x + 3y)(4x - 9y) \\  = 2x(4x - 9y) + 3y(4x - 9y) \\  = 8 {x}^{2}  - 18xy + 12xy - 27 {y}^{2}  \\  = 8 {x}^{2}  - 6xy - 27 {y}^{2}

8.)( \frac{1}{4}  {x}^{2}  -  \frac{1}{5}  {y}^{2})(4 {x}^{2}   + 5 {y}^{2} ) \\  =  \frac{1}{4}  {x}^{2} (4 {x}^{2}  +5  {y}^{2} ) -   \frac{1}{5} {y}^{2} (4 {x}^{2}  + 5 {y}^{2} ) \\  =  {x}^{4}  +  \frac{5}{4}  {x}^{2} {y}^{2}   -  \frac{4}{5}  {x}^{2}  {y}^{2}  -  {y}^{4}  \\  =  {x}^{4}  +  \frac{25 {x}^{2}  {y}^{2}  - 16 {x}^{2}  {y}^{2} }{20}  -  {y}^{4}  \\  =  {x}^{4}  +  \frac{9 {x}^{2} {y}^{2}  }{20}  -  {y}^{4}

9.) and 10.) are similar to 8.) part which I have solved above

and

from next time give more marks for this type of long questions

I hope it will help you

Answered by 8472
2

Answer:

thank u for free points ☺️

Similar questions