Math, asked by RashmiDulgach, 3 months ago

Find the following squares by using the identities. ( y - 7 ) ² ( b) (103)²​

Answers

Answered by Anonymous
74

{\large{\pmb{\sf{\underline{Required \; Solution...}}}}}

{\quad \quad \quad{\pmb{\sf{\circ \: \: Question...}}}}

Find the following squares by using the identities.

  • (y-7)²
  • (103)²

{\quad \quad \quad{\pmb{\sf{\circ \: \: Solution...}}}}

➼ Find the following squares by using the identities.

  • (y-7)² = y² - 14y + 49
  • (103)² = 10609

{\quad \quad \quad{\pmb{\sf{\circ \: \: Using \; identities...}}}}

{\small{\underline{\boxed{\sf{(a-b)^{2} \: = a^{2} - 2ab + b^{2}}}}}}

{\small{\underline{\boxed{\sf{(a+b)^{2} \: = a^{2} + 2ab + b^{2}}}}}}

{\quad \quad \quad{\pmb{\sf{\circ \: \: Full \; Solution...}}}}

Solution for question's part number (1).

Solution is given below -

{\sf{:\implies (y-7)^{2}}}

{\small{\underline{\boxed{\sf{(a-b)^{2} \: = a^{2} - 2ab + b^{2}}}}}}

{\sf{:\implies (a-b)^{2} \: = a^{2} - 2ab + b^{2}}}

  • [Here, a = y and b = 7]

{\sf{:\implies (y-7)^{2} \: = (y)^{2} - 2(y)(7) + (7)^{2}}}

{\sf{:\implies (y)^{2} - 14y + 49}}

Let's verify the result too. Verification is given below -

{\sf{:\implies (y-7)^{2}}}

{\sf{:\implies (y-7)(y-7)}}

{\sf{:\implies y(y-7) - 7(y-7)}}

{\sf{:\implies y^{2} - 7y - 7y + 49}}

{\sf{:\implies y^{2} - 14y + 49}}

Henceforth, verified !

➼ Solution for question's part number (2).

Solution is given below -

{\sf{:\implies (103)^{2}}}

{\sf{:\implies (100+3)^{2}}}

{\small{\underline{\boxed{\sf{(a+b)^{2} \: = a^{2} + 2ab + b^{2}}}}}}

{\sf{:\implies (a+b)^{2} \: = a^{2} + 2ab + b^{2}}}

{\sf{:\implies (100)^{2} + 2(100)(3) + (3)^{2}}}

{\sf{:\implies 10000 + 2(300) + 9}}

{\sf{:\implies 10000 + 600 + 9}}

{\sf{:\implies 10600 + 9}}

{\sf{:\implies 10609}}

Similar questions