CBSE BOARD X, asked by Anonymous, 10 months ago

Find the following values of the discriminant for the following quadratic equations ​d =b^2-4ac methods camplete solution

Attachments:

Answers

Answered by aizaz6556
23

Answer:

This is your answer

Hope it will help you

Mark me brainliest

Attachments:
Answered by amitkumar44481
66

SolutioN :

i ) x² + 10x - 7 = 0.

 \tt \dagger \:  \:  \:  \:  \: a {x}^{2}  + bx + c = 0.

Where as,

  • a = 1.
  • b = 10.
  • c = - 7.

D = b² - 4ac.

→ D = ( 10 )² - 4 ( 1 ) ( - 7 )

→ D = 100 - 28.

→ D = 128.

More InformatioN :

We have, Quadratic Formula.

 \tt \dagger \:  \:  \:  \:  \: \boxed{  \tt x =  \dfrac{  - b\pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \tt :  \implies  \tt x =  \dfrac{  - 10\pm \sqrt{ {(10)}^{2} - 4 \times 1 \times  - 7 } }{2}

 \tt :  \implies  \tt x =  \dfrac{  - 10\pm \sqrt{ 100  + 28 } }{2}

 \tt :  \implies  \tt x =  \dfrac{  - 10\pm \sqrt{ 1 28 } }{2}

 \tt :  \implies  \tt x =  \dfrac{  - 10 +  \sqrt{ 1 28 } }{2}

 \tt :  \implies  \tt x =  \dfrac{  - 10 -  \sqrt{ 1 28 } }{2}

\rule{90}2

( ii ) 2x² - 3x + 5 = 0.

Where as,

  • a = 2.
  • b = - 3.
  • c = 5.

→ D = b² - 4ac.

→ D = ( - 3 )² - 4( 2 )(5).

→ D = 9 - 10 * 4.

→ D = 9 - 40.

→ D = - 31.

MorE InformatioN :

 \tt :  \implies  \tt x =  \dfrac{  3\pm \sqrt{ {( - 3)}^{2} - 4 \times 2 \times  5 } }{2 \times 2}

 \tt :  \implies  \tt x =  \dfrac{  3\pm \sqrt{ 9 - 40 } }{2 \times 2}

 \tt :  \implies  \tt x =  \dfrac{  3\pm \sqrt{  - 31 } }{4}

( iii ) 2m² + m - 1 = 0.

Where as,

  • a = 2.
  • b = 1.
  • c = - 1.

→ D = b² - 4ac.

→ D = ( 1 )² - 4(2)(-1)

→ D = 1 + 8.

→ D = 9.

\rule{90}2

( iv ) 3x² - 4√3x + 4 = 0.

Where as,

  • a = 3.
  • b = - 4√3.
  • c = 4.

→ D = b² - 4ac.

→ D = ( - 4√3 )² - 4(3)(4).

→ D = 48 - 48.

→ D = 0.

\rule{90}2

( v ) x² + 7x + 6 = 0.

Where as,

  • a = 1.
  • b = 7.
  • c = 6.

D = b² - 4ac.

→ D = ( 7 )² - 4(1)(6).

→ D = 49 - 24.

→ D = 25.

\rule{90}2

Similar questions