find the follwing du/dx u=X log (xy) where x²-xy+y²=a²
Answers
Answered by
0
Answer:
Given expression is,
log(x.y)=x
2
+y
2
∴logx+logy=x
2
+y
2
Differentiate both sides w.r.t. x, we get,
x
1
+
y
1
dx
dy
=2x+2y
dx
dy
∴
x
1
−2x=2y
dx
dy
−
y
1
dx
dy
∴(2y−
y
1
)
dx
dy
=
x
1
−2x
∴(
y
2y
2
−1
)
dx
dy
=
x
1−2x
2
∴
dx
dy
=(
2y
2
−1
y
)(
x
1−2x
2
)
∴
dx
dy
=
x(2y
2
−1)
y(1−2x
2
)
Similar questions