Math, asked by rose22019, 1 month ago

Find the foot of the perpendicular from the point (-1,2,3) to the line
x−1/2= y+4/3 = z-3/1

Answers

Answered by senboni123456
3

Step-by-step explanation:

Given line \tt{\green{\dfrac{x-1}{2}=\dfrac{y+4}{3}=\dfrac{z-3}{1}}}

Vector equation of the given line is

 \sf{ \blue{ \vec{r} = ( \hat{i}  - 4 \hat{j} + 3 \hat{k}) +  \lambda(2\hat{i}   + 3\hat{j} + \hat{k})}}

Let foot of perpendicular be \sf{\equiv\,(1+2\lambda\,,\,-4+3\lambda\,,\,3+\lambda)}

DR of line joining the given point and its foot of perpendicular is

\sf{\equiv\,(-2-2\lambda\,,\,6-3\lambda\,,\,-\lambda)}

Now, the line joining the given point and its foot of perpendicular is perpendicular to the given line, so,

\sf{2(-2-2\lambda) + 3(6-3\lambda) + 1(-\lambda) = 0}

\sf{ \implies - 4-4\lambda + 18-9\lambda -\lambda= 0}

\sf{ \implies  +  14-4\lambda -9\lambda -\lambda= 0}

\sf{ \implies    14-14\lambda= 0}

\sf{ \implies   \lambda= 1}

Hence, coordinates of foot of perpendicular is

\sf{ \equiv(1+2\,,\,-4+3\,,\,3+1)}

\sf{ \equiv(3\,,\,-1\,,\,4)}

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given equation of line l is

\rm :\longmapsto\:\dfrac{x - 1}{2}  = \dfrac{y + 4}{3}  = \dfrac{z - 3}{1}

Let assume that

\rm :\longmapsto\:\dfrac{x - 1}{2}  = \dfrac{y + 4}{3}  = \dfrac{z - 3}{1} = k

Any point on the line l, say P is

\rm :\longmapsto\:x = 2k + 1

\rm :\longmapsto\:y = 3k  - 4

\rm :\longmapsto\:z = k + 3

So,

\rm :\longmapsto\:Coordinates \: of \: P = (2k + 1, 3k - 4, k + 3)

Also, Direction ratios of line l is (2, 3, 1)

Let assume that the coordinate (- 1, 2, 3) is represented as N.

So, Direction ratios of line segment PN is given by

\rm \:  =  \: (2k + 1 + 1, 3k - 4 - 2, k + 3 - 3)

\rm \:  =  \: (2k +2, 3k - 6, k)

Now, as it is given that

Line l and PN are perpendicular.

So, (Direction ratios of line l) . (Direction ratios of PN) = 0

 \rm :\longmapsto\:\: 2(2k +2) + 3(3k - 6) +  k = 0

 \rm :\longmapsto\:\: 4k +4 + 9k - 18 +  k = 0

 \rm :\longmapsto\:\: 14k  - 14  = 0

 \rm :\longmapsto\:\: 14k = 14

\bf\implies \:k = 1

Hence, Coordinates of point P is

\rm :\longmapsto\:Coordinates \: of \: P = (2 + 1, 3 - 4, 1 + 3)

\rm :\longmapsto\:Coordinates \: of \: P = (3,  - 1, 4)

So, Coordinates of foot of perpendicular P is

\rm :\longmapsto\:\boxed{ \tt{ \: Coordinates \: of \: P = (3,  - 1, 4) \: }}

More to know :-

Let us consider two equation of lines

\rm :\longmapsto\:\vec{r} = \vec{a_1} +  \: k \: \vec{b_1}

and

\rm :\longmapsto\:\vec{r} = \vec{a_2} +  \: m \: \vec{b_2}

Then

1. Two lines are parallel iff

\boxed{ \tt{ \: \vec{b_1} \times \vec{b_2} = 0 \: }}

or

\boxed{ \tt{ \: \vec{b_1}  =   \alpha \vec{b_2}\: }}

2. Two lines are perpendicular iff

\boxed{ \tt{ \: \vec{b_1}.\vec{b_2} = 0 \: }}

Attachments:
Similar questions