Physics, asked by dusmantabehera100100, 2 months ago

Find the force required to move a body weighting 200kg on a rough horizontal surface having cofficient of friction 0.35​

Answers

Answered by Sauron
57

Answer:

The force required to move the body is 686 N.

Step-by-step explanation:

Mass of the body = 200 kg

Coefficient of friction = 0.35

Force required to move the body = ??

\bigstar \: \boxed{\sf{F = \mu  N}}

\sf{N = {m \times g}} so, replacing it in the formula, it forms,

\sf{F =\mu \times  \: m \times g}

  • \mu = 0.35
  • m = 200 kg
  • g = 9.8 m/s²

\longrightarrow{\sf{F =  0.35  \times 200 \times 9.8}}

\longrightarrow{\sf{F = 70  \times 9.8}}

\longrightarrow{\sf{F = 686 \: N}}

Force required = 686 N

Therefore, the force required to move the body is 686 N.

Answered by Anonymous
52

Answer:

Given :-

  • A body weighing 200 kg on a rough horizontal surface having coffecient of friction of 0.35.

To Find :-

  • What is the force required to move a body.

Formula Used :-

\clubsuit Force Of Friction Formula :

\longmapsto \sf\boxed{\bold{\pink{F =\: \mu mg}}}

where,

  • \mu = Friction
  • m = Mass
  • g = Acceleration due to gravity

Solution :-

Given :

\bigstar \: \: \: \sf Friction (\mu) =\: 0.35

\bigstar \: \: \sf Mass (m) =\: 200\: kg

\bigstar \: \: \sf Acceleration\: due\: to\: gravity (g) =\: 9.8\: m/s^2

According to the question by using the formula we get,

\longrightarrow \sf F =\: 0.35 \times 200 \times 9.8

\longrightarrow \sf F =\: \dfrac{35}{100} \times 20{\cancel{0}} \times \dfrac{98}{1\cancel{0}}

\longrightarrow \sf F =\: \dfrac{35}{100} \times 20 \times 98

\longrightarrow \sf F =\: \dfrac{35}{100} \times 1960

\longrightarrow \sf F =\: \dfrac{686\cancel{00}}{1\cancel{00}}

\longrightarrow \sf F =\: \dfrac{686}{1}

\longrightarrow \sf\bold{\red{F =\: 686\: N}}

\therefore The force required to move a body is 686 N .

Similar questions