Math, asked by shivamjaglan3, 7 months ago

find the four different solutions of the equation 3x+7y=5​

Answers

Answered by sonal1305
6

{\huge{\underline{\sf {\pink{Answer}}}}}

\: \:

1. x = 3 , y = 2

2. x = 4 , y = -1

3. x = 5/3 , y = 0

4. x = 19/3 , y = -2

\: \:

{\huge{\underline{\sf {\pink{Explanation :}}}}}

\: \:

Given :

\sf3x + 7y = 5 \\

\sf3x = 5 - 7y \\

\sf \: x =  \frac{5 \:  -  \: 7y}{3} \\

 \:  \:

\: \:

Putting any value of y we will get the value of x that would satisfy the given equation.

\: \:

 \:

Let, y = 2

\: \:

\sf \: x \:  =  \frac{5  \: -  \: 7(2)}{3} \\

\sf x \:  =  \frac{5 - 14}{3} \\

 \sf  \: x =  \frac{9}{3} \\

 \sf \: x = 3 \\

\: \:

Let, y = -1

\: \:

\sf \: x \:  =  \frac{5  \: -  \: 7(-1)}{3} \\

\sf \: x \:  =  \frac{(5  \: + 7)}{3} \\

\sf \: x \:  =  \frac{12)}{3} \\

 \sf \: x = 4\\

\: \:

Let, y = 0

\sf \: x \:  =  \frac{5  \: -  \: 7(0)}{3} \\

\sf \: x \:  =  \frac{5}{3} \\

\: \:

Let, y = -2

\: \:

\sf \: x \:  =  \frac{5  \: -  \: 7(-2)}{3} \\

\sf \: x \:  =  \frac{(5  \: + 14)}{3} \\

\sf \: x \:  =  \frac{19}{3} \\

Answered by muthaharafzal
0

Step-by-step explanation:

3x+7y=5

  • hence ,R.HS is not equal to LHs
Similar questions