find the Fourier series
Answers
The Fourier series of a function f(x) in the interval [N, N+2L] or (N, N+2L) is given by,
where,
Here,
and the interval is (0, 2), i.e., N = 0 and L = 1.
Finding
FInding
Finding
Hence,
or,
Step-by-step explanation:
The Fourier series of a function f(x) in the interval [N, N+2L] or (N, N+2L) is given by,
\displaystyle\small\text{$\longrightarrow f(x)=\dfrac{a_0}{2}+\sum_{n=1}^\infty\left(a_n\cos\left(\dfrac{n\pi}{L}\,x\right)+b_n\sin\left(\dfrac{n\pi}{L}\,x\right)\right)$}⟶f(x)=
2
a
0
+∑
n=1
∞
(a
n
cos(
L
nπ
x)+b
n
sin(
L
nπ
x))
where,
\displaystyle\small\text{$a_0=\dfrac{1}{L}\int\limits_N^{N+2L}f(x)\ dx$}a
0
=
L
1
N
∫
N+2L
f(x) dx
\displaystyle\small\text{$a_n=\dfrac{1}{L}\int\limits_N^{N+2L}f(x)\cos\left(\dfrac{n\pi}{L}\,x\right)\ dx$}a
n
=
L
1
N
∫
N+2L
f(x)cos(
L
nπ
x) dx
\displaystyle\small\text{$b_n=\dfrac{1}{L}\int\limits_N^{N+2L}f(x)\sin\left(\dfrac{n\pi}{L}\,x\right)\ dx$}b
n
=
L
1
N
∫
N+2L
f(x)sin(
L
nπ
x) dx
Here,
\displaystyle\small\text{$f(x)=\dfrac{\pi-x}{2}$}f(x)=
2
π−x
and the interval is (0, 2), i.e., N = 0 and L = 1.
Finding \displaystyle\small\text{$a_0,$}a
0
,
\displaystyle\small\text{$\longrightarrow a_0=\dfrac{1}{L}\int\limits_N^{N+2L}f(x)\ dx$}⟶a
0
=
L
1
N
∫
N+2L
f(x) dx
\displaystyle\small\text{$\longrightarrow a_0=\int\limits_0^2\left(\dfrac{\pi-x}{2}\right)\ dx$}⟶a
0
=
0
∫
2
(
2
π−x
) dx
\displaystyle\small\text{$\longrightarrow a_0=\dfrac{\pi}{2}\big[x\big]_0^2-\dfrac{1}{4}\left[x^2\right]_0^2$}⟶a
0
=
2
π
[x]
0
2
−
4
1
[x
2
]
0
2
\displaystyle\small\text{$\longrightarrow a_0=\pi-1$}⟶a
0
=π−1
FInding \displaystyle\small\text{$a_n,$}a
n
,
\displaystyle\small\text{$\longrightarrow a_n=\dfrac{1}{L}\int\limits_N^{N+2L}f(x)\cos\left(\dfrac{n\pi}{L}\,x\right)\ dx$}⟶a
n
=
L
1
N
∫
N+2L
f(x)cos(
L
nπ
x) dx
\displaystyle\small\text{$\longrightarrow a_n=\int\limits_0^2\left(\dfrac{\pi-x}{2}\right)\cos(n\pi x)\ dx$}⟶a
n
=
0
∫
2
(
2
π−x
)cos(nπx) dx
\displaystyle\small\text{$\longrightarrow a_n=\dfrac{\pi}{2}\int\limits_0^2\cos(n\pi x)\ dx-\dfrac{1}{2}\int\limits_0^2x\cos(n\pi x)\ dx$}⟶a
n
=
2
π
0
∫
2
cos(nπx) dx−
2
1
0
∫
2
xcos(nπx) dx
\displaystyle\small\text{$\longrightarrow a_n=\dfrac{\pi}{2n\pi}\big[\sin(n\pi x)\big]_0^2-\dfrac{1}{2}\left[\dfrac{1}{n\pi}\big[x\sin(n\pi x)\big]_0^2-\dfrac{1}{n\pi}\int\limits_0^2\sin(n\pi x)\ dx\right]$}⟶a
n
=
2nπ
π
[sin(nπx)]
0
2
−
2
1
[
nπ
1
[xsin(nπx)]
0
2
−
nπ
1
0
∫
2
sin(nπx) dx]
\displaystyle\small\text{$\longrightarrow a_n=0$}⟶a
n
=0
Finding \displaystyle\small\text{$b_n,$}b
n
,
\displaystyle\small\text{$\longrightarrow b_n=\dfrac{1}{L}\int\limits_N^{N+2L}f(x)\sin\left(\dfrac{n\pi}{L}\,x\right)\ dx$}⟶b
n
=
L
1
N
∫
N+2L
f(x)sin(
L
nπ
x) dx
\displaystyle\small\text{$\longrightarrow b_n=\int\limits_0^2\left(\dfrac{\pi-x}{2}\right)\sin(n\pi x)\ dx$}⟶b
n
=
0
∫
2
(
2
π−x
)sin(nπx) dx
\displaystyle\small\text{$\longrightarrow b_n=\dfrac{\pi}{2}\int\limits_0^2\sin(n\pi x)\ dx-\dfrac{1}{2}\int\limits_0^2x\sin(n\pi x)\ dx$}⟶b
n
=
2
π
0
∫
2
sin(nπx) dx−
2
1
0
∫
2
xsin(nπx) dx
\displaystyle\small\text{$\longrightarrow b_n=-\dfrac{\pi}{2n\pi}\big[\cos(n\pi x)\big]_0^2-\dfrac{1}{2}\left[-\dfrac{1}{n\pi}\big[x\cos(n\pi x)\big]_0^2+\dfrac{1}{n\pi}\int\limits_0^2\cos(n\pi x)\ dx\right]$}⟶b
n
=−
2nπ
π
[cos(nπx)]
0
2
−
2
1
[−
nπ
1
[xcos(nπx)]
0
2
+
nπ
1
0
∫
2
cos(nπx) dx]
\displaystyle\small\text{$\longrightarrow b_n=\dfrac{1}{n\pi}$}⟶b
n
=
nπ
1
Hence,
\displaystyle\small\text{$\longrightarrow f(x)=\dfrac{a_0}{2}+\sum_{n=1}^\infty\left(a_n\cos\left(\dfrac{n\pi}{L}\,x\right)+b_n\sin\left(\dfrac{n\pi}{L}\,x\right)\right)$}⟶f(x)=
2
a
0
+∑
n=1
∞
(a
n
cos(
L
nπ
x)+b
n
sin(
L
nπ
x))
\displaystyle\small\text{$\longrightarrow\underline{\underline{f(x)=\dfrac{\pi-1}{2}+\dfrac{1}{\pi}\sum_{n=1}^\infty\dfrac{\sin\left(n\pi x\right)}{n}}}$}⟶
f(x)=
2
π−1
+
π
1
∑
n=1
∞
n
sin(nπx)
or,
\displaystyle\small\text{$\longrightarrow\underline{\underline{f(x)=\dfrac{\pi-1}{2}+\dfrac{1}{\pi}\left(\sin\left(\pi x\right)+\dfrac{\sin\left(2\pi x\right)}{2}+\dfrac{\sin\left(3\pi x\right)}{3}+\dfrac{\sin\left(4\pi x\right)}{4}+\,\dots\right)}}$}⟶
f(x)=
2
π−1
+
π
1
(sin(πx)+
2
sin(2πx)
+
3
sin(3πx)
+
4
sin(4πx)
+…)