Find the Fourier series expansion of f(x) = e^ax in the interval (0,2π).
Answers
Answered by
5
Answer:
We know, x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
= 1/2(x + y + z )[2x² + 2y² + 2z² - 2xy - 2yz - 2zx]
= 1/2(x + y + z) [x² + x² + y² + y² + z² + z² - 2xy - 2yz - 2zx ]
= 1/2 (x + y + z) [ x² + y² - 2xy + y² + z² - 2yz + z² + x² - 2zx ]
= 1/2(x + y + z) [(x² + y² - 2xy) + (y² + z² - 2yz) + (z² + x² - 2zx)]
= 1/2(x + y + z) [ (x - y)² + (y - z)² + (z - x)² ]
Hence, x³ + y³ + z³ - 3xyz = 1/2(x + y + z) [ (x - y)² + (y - z)² + (z - x)² ]
Answered by
0
Answer:
Find the Fourier series expansion of f(x) = e^ax in the interval (0,2π).
Similar questions