Math, asked by nikhillut, 1 year ago

Find the Fourier series for the function f (x) = |Cosx| in (-π,π)

Answers

Answered by Anonymous
9

Given f(x) = |sinx|

f(x) = |sinx| = sinx

f(-x) = |sin(-x)| = sinx

Hence f(x) = f(-x)

∴∴ |sinx| is even function

The Fourier series of an even function contains only cosine terms and is known as Fourier Series and is given by

f(x)=a02+n=1ancosnxf(x)=a02+n=1ancosnx

a0=−ππf(x)dx=∫0πf(x)cosnxdxa0=−ππf(x)dx=∫0πf(x)cosnxdx

∴∴ Let us first find

a0=∫0πsinxdxa0=∫0πsinxdx

a0=∫0πsinxdxa0=∫0πsinxdx

a0=[−cosx]π0==a0=[−cosx]0π==

a0=a0=

Now

an=∫0πf(x)cosnxdxan=∫0πf(x)cosnxdx

an=∫0πsinxcosnxdxan=∫0πsinxcosnxdx

an=∫0πsin(1+n)x+sin(1−n)xdxan=∫0πsin(1+n)x+sin(1−n)xdx

∵sinAsinB=12[sin(A+B)+sin(A−B)]∵sinAsinB=12[sin(A+B)+sin(A−B)]

an=∫0πsin(1+n)x+sin(1−n)xdxan=∫0πsin(1+n)x+sin(1−n)xdx

an=[−cos(1+n)x1+ncos(1−n)x1−n]π0an=[−cos(1+n)x1+ncos(1−n)x1−n]0π

an=[−cos(1+n)π1+ncos(1−n)π1−n+11−n+11+n]an=[−cos(1+n)π1+ncos(1−n)π1−n+11−n+11+n]

an=[−cos(π+nπ)1+ncos(π−nπ)1−n+21−n2]an=[−cos(π+nπ)1+ncos(π−nπ)1−n+21−n2]

an=[−(−cosnπ)1+n(−cosnπ)1−n+21−n2]an=[−(−cosnπ)1+n(−cosnπ)1−n+21−n2]

an=[2cosnπ1−n2+21−n2]an=[2cosnπ1−n2+21−n2]

an=2π(1−n2)(cosnπ+1)an=2π(1−n2)(cosnπ+1)

an=2π(1−n2)(2)an=2π(1−n2)(2)

If n is even

an=4π(1−n2)an=4π(1−n2)

an=0an=0

If n is odd

∴f(x)=a02+n=1ancosnx∴f(x)=a02+n=1ancosnx

∴f(x)=12+n=1ancos2nx∴f(x)=12+n=1ancos2nx

(anan exist only if n is even i.e. put n = 2n)

∴f(x)=+n=14π(1−(2n)2)cos2nx∴f(x)=+n=14π(1−(2n)2)cos2nx

(i.e. put n = 2n)

∴f(x)=n=1cos2nx(1−4n2)∴f(x)=n=1cos2nx(1−4n2)

By re-arranging,

f(x)=n=1cos2nx(4n2−1)

Similar questions