Math, asked by varshabalaji20, 4 months ago

Find the fourier sin series for the function f(x) =x²in (0,pi) ​

Answers

Answered by Ompravassahoo
0

Answer:

please mark me as brainliest

Step-by-step explanation:

Assume that f(x) is an odd function on the interval [−L/2, L/2].

a_m=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\cos(\dfrac{m\pi x}{L})dx=0, m=0,1,2,...a

m

=

L

1

−L

L

f(x)cos(

L

mπx

)dx=0,m=0,1,2,...

b_n=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\sin(\dfrac{n\pi x}{L})dx, n=1,2,...b

n

=

L

1

−L

L

f(x)sin(

L

nπx

)dx,n=1,2,...

b_n=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\sin(\dfrac{n\pi x}{L})dx=b

n

=

L

1

−L

L

f(x)sin(

L

nπx

)dx=

=\dfrac{2}{\pi/2}\displaystyle\int_{0}^{\pi/2}\cos x\sin(\dfrac{n\pi x}{\pi/2})dx==

π/2

2

0

π/2

cosxsin(

π/2

nπx

)dx=

=\dfrac{4}{\pi}\displaystyle\int_{0}^{\pi/2}\cos x\sin(2nx)dx=

π

4

0

π/2

cosxsin(2nx)dx

\int\cos x\sin (2nx)dx=∫cosxsin(2nx)dx=

=\dfrac{1}{2}\int(\sin ((2n+1)x)+\sin ((2n-1)x))dx==

2

1

∫(sin((2n+1)x)+sin((2n−1)x))dx=

=-\dfrac{1}{2(2n+1)}\cos((2n+1)x)-\dfrac{1}{2(2n-1)}\cos((2n-1)x)+C=−

2(2n+1)

1

cos((2n+1)x)−

2(2n−1)

1

cos((2n−1)x)+C

b_n=\dfrac{4}{\pi}\displaystyle\int_{0}^{\pi/2}\cos x\sin(2nx)dx=b

n

=

π

4

0

π/2

cosxsin(2nx)dx=

=-\dfrac{2}{\pi(2n+1)}(\cos((2n+1)\dfrac{\pi}{2})+\dfrac{2}{\pi(2n+1)}\cos((2n+1)(0))-=−

π(2n+1)

2

(cos((2n+1)

2

π

)+

π(2n+1)

2

cos((2n+1)(0))−

-\dfrac{2}{\pi(2n-1)}(\cos((2n-1)\dfrac{\pi}{2})+\dfrac{2}{\pi(2n-1)}\cos((2n-1)(0))=−

π(2n−1)

2

(cos((2n−1)

2

π

)+

π(2n−1)

2

cos((2n−1)(0))=

=\dfrac{2}{\pi(2n+1)}\sin(\pi n)+\dfrac{2}{\pi(2n+1)}+=

π(2n+1)

2

sin(πn)+

π(2n+1)

2

+

+\dfrac{2}{\pi(2n-1)}\sin(\pi n)+\dfrac{2}{\pi(2n-1)}=\dfrac{8n}{\pi(4n^2-1)}+

π(2n−1)

2

sin(πn)+

π(2n−1)

2

=

π(4n

2

−1)

8n

f(x)\sim\displaystyle\sum_{n=1}^\infin\dfrac{8n}{\pi(4n^2-1)}\sin(2nx)f(x)∼

n=1

π(4n

2

−1)

8n

sin(2nx)

Similar questions