Math, asked by vtu10771, 6 months ago

Find the Fourier Transform of f(x) = (1/2a: ​

Answers

Answered by Gaurav9013221406
1

Answer:

this is a exam type question that is why I am not telling you the ans but i can tell you what is Fourier transform

Attachments:
Answered by ushmagaur
0

Answer:

The Fourier transform for constant does not exists.

Step-by-step explanation:

Recall the definition of Fourier Transform,

Let f(x) be a continuous and integrable function in (-\infty, \infty) then \hat f is the Fourier transform of f(x) is given by

\hat f =\frac{1}{2 \pi}\int\limits^{\infty}_{-\infty} {f(x)e^{-ipx}} \, dx

Consider the function as follows:

f(x)=\frac{1}{2a}

Notice that f(x) is a constant function.

Using Fourier transform,

\hat f =\frac{1}{2 \pi}\int\limits^{\infty}_{-\infty} {(\frac{1}{2a} )e^{-ipx}} \, dx (here f(x) = 1/2a)

\hat f =\frac{1}{2 \pi} (\frac{1}{2a} )\int\limits^{\infty}_{-\infty} {e^{-ipx}} \, dx

\hat f =\frac{1}{4 \pi a} \int\limits^{\infty}_{-\infty} {e^{-ipx}} \, dx ...... (1)

Now, evaluate the integral as follows:

\int\limits^{\infty}_{-\infty} {e^{-ipx}} \, dx =\frac{1}{-ix} (e^{-ipx})^{\infty}_{-\infty}

                   =\frac{1}{-ix} (e^{-ip(\infty)}-e^{-ip(-\infty)})

                   =\frac{1}{-ix} (e^{-\infty}-e^{\infty})

Further, simplify as follows:

As we know e^{-\infty}=0 and e^{-\infty}=\infty.

\int\limits^{\infty}_{-\infty} {e^{-ipx}} \, dx =\frac{1}{-ix} (0-{\infty})

\int\limits^{\infty}_{-\infty} {e^{-ipx}} \, dx =-\infty

Substitute the value of integral is equation (1) as follows:

\hat f =-\infty

This shows that Fourier transform for constant function cannot be determined directly.

Therefore, the Fourier transform does not exists.

#SPJ3

Similar questions