Math, asked by tokejantehobena, 1 month ago

Find the fourth proportional to:
a3 - b3, a4 + a2b2 + b4, a - b​

Answers

Answered by linanguyenyt
1

Answer:x=\frac{(a^{4} +a^{2} b^{2} +b^{4)}}{(a^{2}+ab+ b^{2}) }

Step-by-step explanation:

Let the fourth proportional to

a ^{3} - b^{3}, a^{4} + a^{2} b^{2} + b^{4}, a-b be x

Then,

= (a^{3} -b^{3} ): (a^{4} +a^{2} b^{2} +b^{4}) :: (a – b) : x

=>(a^{3} -b^{3} ) x =  (a – b) (a^{4} +a^{2} b^{2} +b^{4})

=> x = [(a – b). (a^{4} +a^{2} b^{2} +b^{4})] / (a ^{3} - b^{3})

=> x=\frac{(a-b)(a^{4} +a^{2} b^{2} +b^{4)}}{(a-b)(a^{2}+ab+ b^{2}) }

=> x=\frac{(a^{4} +a^{2} b^{2} +b^{4)}}{(a^{2}+ab+ b^{2}) }

Similar questions