Math, asked by Naitik44611, 11 months ago

find the fourth root of unity

Answers

Answered by Gopeshtiwari34
7

Here is your answer mate..✌✌✔

A complex number z such that z 4=1. There are 4 fourth roots of unity and they are 1, i,−1 and−i.

i is the fourth root of unity as it follows 4n exponents

Answered by Swarup1998
6

Fourth root of unity (\sqrt[4]{1}) are 1, (-1), i and (-i), where i=\sqrt{-1}.

Step-by-step explanation:

Let us take: x^{4}=1

\Rightarrow x^{4}-1=0

  • transposing 1 to the left hand side

\Rightarrow (x^{2})^{2}-(1)^{2}=0

  • exponent rule: a^{2m}=(a^{m})^{2}

\Rightarrow (x^{2}+1)(x^{2}-1)=0

  • using algebraic identity: a^{2}-b^{2}=(a+b)(a-b)

\Rightarrow (x^{2}-\overline{-1})(x^{2}-1)=0

\Rightarrow (x^{2}-i^{2})(x^{2}-1^{2})=0

  • since i=\sqrt{-1}\Rightarrow i^{2}=-1

\Rightarrow (x+i)(x-i)(x+1)(x-1)=0

  • using algebraic identity: a^{2}-b^{2}=(a+b)(a-b)

So, either x+i=0 or x-i=0 or x+1=0 or x-1=0

\Rightarrow x=-i,i,-1,1

\Rightarrow \boxed{x=1,-1,i,-i}

Similar questions