Math, asked by eshwarsai2106, 5 months ago

Find the fourth vertex of the parallelogram whose consecutive vertices are (2, 4, -1), (3, 6, -1) and (4, 5, 1).

Answers

Answered by knjroopa
1

Step-by-step explanation:

Given Find the fourth vertex of the parallelogram whose consecutive vertices are (2, 4, -1), (3, 6, -1) and (4, 5, 1).

  • Now a parallelogram ABCD is drawn .
  • So the vertices are A(2,4,-1), B(3,6,-1) and C(4,5,1) and let D(x,y,z)
  • In a parallelogram, the diagonals intersect each other.Let the point of intersection be p. AC and BD are the diagonals.
  • So midpoint of AC = midpoint of BD
  • So we have the midpoint formula for (x,y,z)
  •             = (x1 + x2 / 2, y1 + y2 / 2, z1 + z2 / 2)
  •             (2 + 4 / 2, 4 + 5 / 2, -1 + 1 / 2) = (3 + x / 2, 6 + y / 2, z + (- 1) / 2 )
  • Now equating x,y and z terms we have,
  •             2 + 4 / 2 = 3 + x / 2
  •                 3 + x = 6
  •                  x = 6 – 3
  •                   x = 3
  •            4 + 5 / 2 = 6 + y / 2
  •                  6 + y = 9
  •                      y = 9 – 6
  •                     y = 3
  •           -1 + 1 / 2 = z – 1 / 2
  •                z – 1 = 0
  •                 z = 0 + 1
  •                 z = 1
  • Therefore D(x,y,z) = D(3,3,1)

Reference link will be

https://brainly.in/question/7675695

https://brainly.in/question/29660670

Similar questions