Math, asked by qazimohdyousufyousuf, 2 months ago

find the fraction whose numerator is 4 less than the denominator. if 1 is subtracted from numerator and 3 is added to the denominator, fraction becomes 1/5.find the original fraction​

Answers

Answered by TheBrainliestUser
47

Answer:

  • The original fraction is 3/7.

Step-by-step explanation:

Let us assume:

  • Numerator of a fraction be x.

Given that:

  • Numerator is 4 less than the denominator.
  • Then, Denominator of a fraction = (x + 4)

  • 1 is subtracted from numerator and 3 is added to the denominator, fraction becomes 1/5.

⇒ (x - 1)/(x + 4 + 3) = 1/5

To Find:

  • The original fraction.

Finding the original fraction:

  • According to the question.

⇒ (x - 1)/(x + 4 + 3) = 1/5

  • Cross multiplication.

⇒ 5(x - 1) = 1(x + 4 + 3)

⇒ 5x - 5 = x + 4 + 3

⇒ 5x - 5 = x + 7

⇒ 5x - x = 7 + 5

⇒ 4x = 12

⇒ x = 12/4

⇒ x = 3

We get,

  • Numerator = x = 3
  • Denominator = x + 4 = 3 + 4 = 7

Original fraction = Numerator/Denominator

Original fraction = 3/7

Answered by mathdude500
36

 \huge\blue{\tt \: Answer - }

\begin{gathered}\begin{gathered}\bf  \: Let -  \green{\begin{cases} &\tt{denominator \:  = x} \\ &\sf{numerator \:  =  \: x - 4} \end{cases}}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf \:fraction -   \purple{\begin{cases} &\bf{\dfrac{x - 4}{x} }  \end{cases}}\end{gathered}\end{gathered}

  \large \underline{\tt \:  \red{ According  \: to  \: statement }}

  • if 1 is subtracted from numerator and 3 is added to the denominator, fraction becomes 1/5.

Now,

\rm :\implies\:Numerator = x - 4 - 1 = x - 5

\rm :\implies\:Denominator = x + 3

So,

\begin{gathered}\begin{gathered}\bf \:fraction - \pink{\begin{cases} &\bf{\dfrac{x - 5}{x + 3} }  \end{cases}}\end{gathered}\end{gathered}

  \large \underline{\tt \:  \blue{ According  \: to  \: statement }}

\rm :\implies\:\dfrac{x - 5}{x + 3}  = \dfrac{1}{5}

\rm :\implies\:5x - 25 = x + 3

\rm :\implies\:5x - x = 25 + 3

\rm :\implies\:4x = 28

\rm :\implies\: \boxed{ \green{ \bf \:x = 7 }}

\begin{gathered}\begin{gathered}\bf So,\:fraction -  \green{\begin{cases} &\tt{\dfrac{x - 4}{x}  =\dfrac{7 - 4}{7} =  \dfrac{3}{7}  }  \end{cases}}\end{gathered}\end{gathered}

Similar questions
Math, 8 months ago